
1 Executive Summary

We propose a project focused on research and development in the area of programming models for
scalable parallel computing. Programming models are of paramount importance because they affect
both the performance delivered by the computer and the productivity of the programmer seeking
that performance. Every programming model presents tradeoffs among performance, portability,
expressivity, and convenience, and so no one model fits all purposes. The coming generation of
petascale computers exacerbates the problem, since vast numbers of nodes, exotic communication
networks, and multicore chips will be the order of the day, requiring advanced implementation tech-
niques for libraries and compilers while the scientific application community begs for simpler, more
abstract, and convenient ways of conceptualizing their programs for these machines. Work carried
out in this Center will advance the state of the art in the understanding, definition, implementation,
and use of models expressed in libraries, languages, and annotations. Our team includes experts
in the efficient implementation of widely used communication libraries, language definition experts
(particularly for partitioned global address space languages), compiler specialists addressing both
these languages and global view languages, and researchers that study programming patterns for
high performance computing.

We will carry out research and development at a number of different levels and across a number
of different types of programming models. The following are cross-cutting themes in the work we
propose.

Productivity. Compiler technology for global view programming models; annotations to hide
complexity of distributed data structures in MPI; design patterns for parallel programming. We
will explore the implementation of a general, asynchronous work queue model for automated load
balancing and effective support for out-of-core computations, in multiple languages and libraries.

Scalability. Compilation for 100K processors and beyond; latency management through function
shipping and multithreading. Scaling library approaches such as MPI and GA will require both
infrastructure improvements and new programming approaches.

Interoperability. Interoperability of parallel programming models and their implementations.
We will ensure that combinations of MPI, Global Arrays, OpenMP, and partitioned global address
space languages, where appropriate, have well-defined semantics for interoperability and that our
implementations have been tested to exhibit those semantics.

Portability. Implementation of various models that take advantage of the newest features of
networks and processors (e.g., InfiniBand RDMA, SMT and multicore processors).

Infrastructure. Enhancements to the runtime system to enable multilevel parallelism, memory
management scalable to petascale systems, lightweight and scalable synchronization (processor
teams, memory, etc.), multithreading and function shipping.

Performance. High-performance and scalable implementation of various models on the latest
and emerging commodity networks/interfaces/protocols and vendor-proprietary networks used in
high-end architectures.

Multithreading. OpenMP enhancements to support scientific computing; interoperability of
OpenMP and other threading models with MPI; support of multithreaded codes in CAF, UPC,
GA, and Titanium, for architectures based on multicore nodes. Basic research in thread safety for
and hierarchical parallelism in PGAS languages and GA library.

1

2 Introduction

A national challenge in high-performance computing is to develop programming models for effec-
tively harnessing the power of “leadership-class” computer systems composed of tens to hundreds
of thousands of processors. To address this issue, we propose a program of integrated research by a
team of researchers who are experts in compilers, communication libraries, and high-performance
cluster interconnects. Our approach is to focus on a relatively small collection of interoperable,
complementary technologies that will provide the scientific application developer with a set of tools
appropriate to the task.

The desire to simplify the task of developing software for scalable parallel systems has spurred
a resurgence of research into language-based parallel programming models as part of DARPA’s
High Productivity Computing Systems initiative begun in 2002. This effort includes support for
parallelism models beyond the popular message-passing abstraction. For example, for programs
with relatively regular data structures, known at compile-time, global view models as expressed in
High Performance Fortran (HPF) or OpenMP provide significant productivity advantages because
the mapping of parallel work to processors is largely hidden within the compiler and runtime system.
With language-based models for parallel programming, a tension exists between abstraction and
scalable performance. Applications with nested parallelism and complex dependence patterns may
require explicit programmer control over the mapping of parallel work as offered by the message-
passing model in MPI [106] and Partitioned Global Address Space (PGAS) languages such as
Co-array Fortran (CAF) [125, 126], Unified Parallel C (UPC) [23], and Titanium [173].

PGAS language models have three key strengths. First, they offer higher productivity than
library-based programming models by making it easier to express shared data structures and to
communicate implicitly and conveniently by reading and writing them. One-sided global address
space models relieve developers from the need to orchestrate two-sided communication, which
frustrates MPI programmers. Second, with communication and synchronization as language prim-
itives, programs written in PGAS languages are more amenable to compiler-based communication
optimization than are MPI programs with library-based communication. Third, like MPI, PGAS
languages enable programmers to hand-craft locality-aware parallelizations by providing them with
control over placement of data, computation, and communication. One current shortcoming of CAF
and UPC is that they fail to provide support for dynamic multithreading. Dynamic multithread-
ing is desirable to exploit hardware-level threading, to support applications with highly dynamic
parallelism, and to hide latency. Within this broad space of language concepts there are trade-offs
between virtualization of the underlying hardware and control over the hardware resources.

A principal goal of this project is refinement of language-based parallel programming models
so that they are expressive (natural for expressing a broad spectrum of algorithms, constructing
efficient parallel data structures, and supporting both static and dynamic strategies for decompos-
ing work), productive (programs are as easy to write as possible), high performance (across the
spectrum of computing platforms ranging from commodity clusters with multicore processors to
leadership-class systems), scalable to leadership-class computer systems with tens to hundreds of
thousands of processors, portable, and interoperable with other programming models, as well as
program development tools. These programming models must meet the needs of complex irregular
applications and support the evolution of existing applications.

Although parallel languages are emerging as practical models for parallel programming, library-
based models are the dominant technology in use today. MPI is the de facto standard for program-
ming scalable scientific applications, with its explicit management of communication. The Global
Array model [114, 115, 119] enhances the MPI model by supporting a global view of distributed
data structures. This capability makes high-productivity programming abstractions available to any

2

MPI application written in standard programming languages such as Fortran, C, C++, or Python
without relying on compiler technology. Furthermore, the Disk Resident Arrays library [112, 52]
provides a high-level programming abstraction for moving data from disk to in-core globally ad-
dressable data structures thus effectively integrating secondary storage with the global address
space model of GA [113, 119].

OpenMP is a widely deployed global address space model that is increasingly used togeterh with
MPI to directly exploit hardware multithreading and fine-grained program parallelism. Its benefits
include ease of use and features for dynamic multithreading. Yet it is difficult to achieve scalable
performance under OpenMP and there is tension between the need to increase the expressivity of
this model and the desire to retain its productivity advantages. Judicious extensions might enable
OpenMP to be a more effective vehicle for exploiting chip parallelism as well as large platforms.

Complex applications often involve multiple parts, each of which might benefit from a different
model. In addition, a given application may go through phases of performance optimization in
which different parallelism paradigms are used. Thus, it becomes critical that implementations of
the models interoperate and that a mixture of paradigms be supported in any given language. To
support mixed paradigms, we will identify concepts in one model that may be used in another. For
example, the addition of multithreading to MPI, GA, or PGAS languages may offer better support
for machines constructed from multicore and SMP architectures. The programming elegance of a
global view model is partly supported in local view languages through collective communication
and collective data structure construction operations. Interoperability requires either a common
communication substrate or well-defined interfaces for coexistence of runtime systems. The greatest
challenge is pinning down the precise semantics of interoperability as models with static parallelism
interact with more dynamic ones, or models with explicit communication interact with those that
allow direct access to remote memory. MPI’s scalability is particularly important for libraries built
on it, and its interoperability with other models underlies the interoperability of such libraries.

2.1 Background

This proposal is for a continuation of the Center for Programming Models for Scalable Parallel Com-
puting (PMODELS), described at [135]. The Center undertook work in three levels of programming
models: those expressed by libraries (MPI, Global Arrays, and GP-SHMEM [132]), languages, both
OpenMP and the Partitioned Global Address Space (PGAS) languages (UPC, Co-array Fortran,
and Titanium), and more exotic languages based on multithreading. It included work on low-
level support for language and library implementation, both InfiniBand and a common interface
for advanced network protocols, as well as an I/O component. Major accomplishments included
new levels of robustness and performance to MPI, GA, ARMCI, and the PGAS languages. This
follow-on project will stress productivity, scalability, portability, modularity and interoperability.

This proposal focuses on the areas in which most progress was made and where the most
benefit can be realized by continuing the work. In particular, the GP-SHMEM and parallel I/O
components have been removed because they were not well integrated with the other work. The
multithreading language components have been removed because this topic is now being explored
by the better-supported language research efforts of DARPA’s HPCS program.

Our goal remains, however, to increase the productivity of application developers by providing
them with a set of programming models, instantiations of those models, and implementation tech-
niques that allow them to chose an appropriate programming approach to their individual problems.
These choices will allow them to obtain scalable performance on today’s (and tomorrow’s) largest
parallel computers with an expressive and convenient combination of languages and libraries.

3

2.2 Overview of Proposed Work

As in the first generation of the Center, we address programming models expressed in both libraries
and languages and include implementation technologies that will be essential for the widespread
adoption of advanced programming models.

Library-based models are represented by MPI, the nearly universal standard instantiation of
the classic message-passing model, now represented by multiple vendor and open-source implemen-
tations, and Global Arrays (GA), a higher-level abstraction of globally addressable shared arrays
efficiently implemented in most computing environments and now relied on by several application
communities. MPI now means MPI-2, with significant extensions to the message-passing model
in the areas of remote-memory access (one-sided communication), parallel I/O, and dynamic pro-
cess management. We have gained experience with both implementations and use of the one-sided
operations and multithreading specifications in particular, and can usefully consider extensions to
the MPI standard in these areas. The development of GA will aim to improve programmer pro-
ductivity while providing additional opportunities for performance optimizations at run time and
functionality extensions to help applications scale to petascale architectures.

Language-based models are represented by work on the partitioned global address space (PGAS)
languages of UPC, Co-array Fortran, and Titanium, together with OpenMP, the most widely used
approach to expressing shared-memory parallelism. Over the past five years, UPC has become
well known and has been put into production in a number of applications. Co-array Fortran has
gone from an internal Cray experiment to being considered for incorporation in the next Fortran
standard. Titanium, in some ways the most “modern” of the three, incorporates an object-oriented
approach to the programming model. For each of these programming models, we propose multiple
improvements to these languages (directives in the case of OpenMP), compilers, and run-time
systems to deliver greater expressivity, performance, and scalability.

To be relevant to the next generation of parallel computers, this work must deliver performance
on a wide range of machines, from commodity clusters to petaflop supercomputers. The tension
between portability and performance motivates research in compilation techniques and communi-
cation methodologies. Substantial compilation research is an integral part of the UPC, Co-array
Fortran, Titanium, and OpenMP language development efforts, but we also undertake compilation
research in the area of “global view” languages in general, in which parallelism is more implicit
and independent of the number of processes. This work will attack the analysis and code gen-
eration problems that must be solved for efficient implementation of emerging languages (IBM’s
X10, Cray’s Chapel, and Sun’s Fortress) being designed by vendors as part of DARPA’s High
Productivity Computing Systems (HPCS) language effort.

Communication technology underlies both language and library implementations on scalable
machines. We will continue to enhance ARMCI [121, 111] for petascale machines. ARMCI underlies
our GA and Co-array Fortran implementations. We include work on applying the sophisticated
InfiniBand interface, which is becoming common on clusters, particularly to MPI implementations.

One important development in computer architecture is the expanding use of multicore pro-
cessors in response to the difficulty in continuing to increase processor clock speeds. Programmers
will need better tools for developing correct and high-performance code for these processors. One
obvious model for such processors is a multithreaded programming model; however, with the ex-
ception of certain parts of OpenMP, such models remain relatively low-level and fragile, as race
conditions are all too common. One aspect of the proposed work is the improvement, for both cor-
rectness and performance, of programming models for multicore processors. In addition, in the near
term, the programming model for the multicore processor will be combined with a scalable paral-
lel programming model; ensuring the interoperation between the intraprocessor and interprocessor

4

programming models is another focus of our efforts.
To encourage adoption of new programming models, we will enable incremental porting by en-

suring that the models may be used together. Achieving this requires interoperable communication
subsystems. Building on our experience in exploring common runtime systems for MPI, GasNET,
ARMCI, and other libraries, we will define and implement an interoperable communication system
that will support incremental porting of applications.

We will also consider “programming patterns,” high-level abstractions found in multiple appli-
cations. Understanding such patterns can guide the requirements and specification of programming
models.

2.3 Why Us?

The team assembled for this project consists of leading researchers in each of its multiple aspects.
Bill Gropp and Ewing Lusk were leading members of the MPI and MPI-2 forums and developers of
the widely used MPICH-2 implementation of MPI-2. Katherine Yelick is a co-designer of the UPC
and Titanium languages and has led the development of open-source compilers for both languages
along with the GASNet communication layer. John Mellor-Crummey is a leading researcher in
compilers for data-parallel languages; he is also leading development of an open-source compiler for
Co-array Fortran. D. K. Panda is a renowned InfiniBand expert and developer of the MVAPICH
and MVAPICH2 MPI implementations. P. Sadayappan is an expert in compiler optimizations
and systems support for scientific computing. Jarek Nieplocha is the developer of Global Arrays
and the ARMCI library supporting multiple high-level models and was a member of the MPI-2
Forum. Barbara Chapman is a leading member of the OpenMP community and holds a seat on
the OpenMP ARB. Marc Snir was a member of both MPI Forums and is now a leader in the study
of high-level programming patterns.

3 Recent Accomplishments

In this section, we outline our recent activities and accomplishments relevant to the work proposed
here. Much of this work was carried out as part of the first-generation Center for Programming
Models for Scalable Parallel Computing.

3.1 PGAS Programming Languages

3.1.1 CAF

PMODELS research at Rice University has focused principally on the design, implementation, and
evaluation of technology for compiling Co-array Fortran programs into efficient code for scalable
parallel systems. A product of this research is cafc—an open-source, multiplatform compiler for
Co-array Fortran [48, 164]. The cafc compiler translates CAF into SPMD Fortran 90 programs
that use either library or hardware support for one-sided communication. Code generated by cafc

is well suited for today’s commodity clusters. For clusters that lack hardware support for a shared
address space, cafc generates code that uses library-based implementations of one-sided commu-
nication, namely PNNL’s ARMCI [121, 111] or U.C. Berkeley’s GASNet [13]. For shared-address
space platforms such as the SGI Altix, cafc can generate code that uses loads and stores di-
rectly to access remote co-array data [41]. Experiments on commodity clusters (Alpha+Quadrics,
Itanium2+Myrinet, Itanium2+Quadrics) and SGI Altix show that for carefully written CAF pro-
grams, code generated by cafc can deliver performance comparable to that of hand-optimized
Fortran+MPI programs—the performance “gold standard” for parallel systems [41, 49, 42, 43]. A
study comparing the performance of CAF, UPC, and MPI implementations of the NAS parallel
benchmarks [6] MG, CG, SP, and BT on several modern architectures examined the challenges in

5

delivering top performance with PGAS languages [43]. These experiments showed that today CAF
and UPC programs deliver top performance on clusters only when written to use bulk communica-
tion; better compiler optimization of communication and synchronization is needed for more natural
implementations of these codes in PGAS languages to achieve highest efficiency. A wavefront ap-
plication in CAF showed that achieving top performance requires overlapping communication with
computation by explicitly managing multiple communication buffers [42]. We have begun to inves-
tigate language and compiler support that can deliver the performance of multiple buffers without
the intricate programming.

3.1.2 UPC

A major accomplishment of the LBNL team, supported in part by PMODELS, was the development
of a highly portable source-to-source translator and runtime for UPC. More than 1500 downloads
of the compiler or runtime system have been made over the past 10 months. The translator
is based on the Open64 open source infrastructure and translates UPC into C code with calls
to the runtime layer. This Berkeley compiler is used as the standard UPC for the SGI Altix
machine and is being ported to the Cray XT3 in collaboration with Cray. The compiler runs
on shared- and distributed-memory machines and has been tested on most operating systems (11
total) and processor architectures (9 total). It can be used on shared-memory machines on top of
POSIX threads, on distributed-memory machines using GASNet (described in Section 3.4.2), and
on hybrids using a mixture of shared memory and message passing. The compiler supports mixed
language programming with MPI and can therefore be used to produce UPC libraries callable from
MPI or the reverse.

We have developed applications and benchmarks to evaluate the performance and productivity
advantages of the global address space model. These applications were chosen primarily because
they are challenging to write in other parallel programming models due to irregularity in parallelism,
data structures, and communication patterns. The first was a mesh generation algorithm (Delauney
triangulation), which uses a divide-and-conquer approach with user level caching [66]. The second
was a hyperbolic solver based on the data structures used in the Chombo AMR package developed
by Colella’s group at LBNL. The most recent was an LU factorization code, designed at a high
level for sparse matrices, although currently configured only for the dense case. This code has been
run on a number of machines (SGI Altix, Opteron/InfiniBand cluster, Itanium/Quadrics cluster,
and Cray X1), showing performance comparable to the HPL benchmark and up to 60% faster
than ScaLAPACK. On a 1024 processor run on an Itanium/Quadrics machine (Thunder at LLNL),
the code acheived 4.4 TFlops. The group has also developed smaller benchmarks, including a
triangular solver for sparse matrices, a 3D FFT (NAS FT), a conjugate gradient algorithm (NAS
CG), and a multigrid solver (NAS MG). The FFT algorithm features non-blocking communication
spread throughout the computation phases to effectively hide communication time. The UPC
code outperforms the standard NAS Fortran/MPI implementation by approximately 2x on several
machines (Quadrics Elan3 & 4, InfiniBand, and Myrinet) with RDMA support and sustains 0.5
TFlops on the Thunder machine [10].

3.1.3 Titanium

Titanium is a dialect of JavaTM 1.4 with extensions for high-performance scientific computing.
It was developed at Berkeley by Professors Aiken, Graham, Hilfinger, and Yelick in collaboration
with LBNL Scientist Phillip Colella and a team of graduate students and postdocs. The past
PMODELS effort has focused on compiler and runtime issues, with other funding supporting work
on applications and language design. The major product of the Titanium effort is a source-to-source
compiler (Titanium to C) that runs on most parallel and serial platforms, combined with a portable

6

runtime system based on GASNet. The language runs on top of shared memory using threads,
distributed memory using GASNet, and clusters of shared-memory machines using a hybrid runtime
system. Performance is comparable to C with MPI [47] and has shown significant productivity
advantages for applications in adaptive mesh refinement (10x code reduction) [168] and heart
simulation [56].

We have developed several analyses that are used in both optimization and error analysis for
parallel languages: concurrency analysis, which determines whether two statements in the program
could run in parallel; synchronization analysis, which lines up matching synchronization constructs;
and conflict analysis, which funds pairs of accesses (at least one being a write) to a variable that
may occur simultaneously [73, 91]. These analyses have been used for data race detection and
memory model enforcement, which allows overlap and reordering of memory operations in the local
memory or across the network, while ensuring that no reordering are visible at the user level [72].
The group also developed optimizations specifically targeting codes with irregular remote access
patterns, such as sparse matrices and particle-mesh methods. Although the programs are written in
a simple, shared memory style, the runtime system does performance-model-based communication
optimizations; the performance on sparse matrix-vector multiply matches or exceeds that of the
Aztec library [147].

3.2 Library-based Models

3.2.1 Global Arrays

In addition to the traditional application areas for Global Arrays such as chemistry, in the course of
the project GA have been adopted by several additional DOE applications, including bioinformatics
and astrophysics. Our effort has focused on enhancing capabilities and performance of the GA
toolkit on high-end systems.

Latency tolerance mechanisms. Several complementary techniques have been developed for
latency tolerance, including one-sided nonblocking communication, zero-copy protocols, and mir-
roring, and have improved performance of scientific applications [130, 158, 119, 84]. Up to 99%
overlap of communication with computation have been demonstrated based on advanced network
protocols (IBM-SP (LAPI), Myrinet (GM), Quadrics (Elan4), and InfiniBand (VAPI)) [119]. We
also introduced a technique called mirroring based on caching latency-sensitive data in shared mem-
ory of an SMP cluster [130], which has been adopted in the latest release of NWChem to improve
performance on commodity clusters.

Advanced optimizations. GA’s communication operations use the fastest communication pro-
tocols available on modern high-performance clusters (i.e., shared memory within SMP nodes and
RDMA between nodes) by exploiting data locality information. Locality and cluster informa-
tion APIs have also been implemented to enable communication optimizations at the application
level. GA communication operations have been optimized to enable zero-copy on networks such
as Quadrics, InfiniBand and Myrinet. These mechanisms have been shown effective across a wide
range of platforms and were essential in development of a novel parallel matrix multiplication
algorithm called SRUMMA [84, 83, 87, 86].

Multilevel parallelism using processor groups/teams. GA has been extended to use pro-
cessor groups (called teams in CAF) [117]. Using arrays defined on disjoint processor groups, the
GA-based implementation of the NAS Conjugate Gradient (CG) benchmark [176] showed higher
performance relative to MPI than previously reported for any other programming model includ-
ing UPC, CAF, and ZPL. This required adding to ARMCI the ability to allocate and manage
global/shared memory by processor teams [88]. A hybrid multilevel parallelization approach based

7

on group-aware GA also resulted in an order of magnitude improvement in scalability [81] for a
time-consuming Hessian calculation in NWChem [76, 60].

Synchronization control. Frequent barrier synchronization in data-parallel programs degrades
performance [61]. To reduce the overhead of barriers in GA programs, we implemented a mask
operation [119] to enable applications to avoid potentially redundant barrier synchronizations em-
bedded in GA data-parallel operations.

3.2.2 High Performance and Scalable MPI over InfiniBand

PMODELS research at the Ohio State University focused on the emerging InfiniBand network-
ing technology. Specifically, we have focused on the following: taking advantage of InfiniBand’s
RDMA-based mechanism [95] for both eager and Rendezvous protocols of MPI, exploiting the
Shared Receive Queue (SRQ) mechanism to design scalable buffer management [150], achieving
better overlap of computation and communication with RDMA read-based optimized Rendezvous
protocols [151], fast and efficient collective operations using both RDMA and InfiniBand hardware
multicast [93, 101, 100, 149, 77, 152], multirail support to provide maximum performance to band-
width hungry applications [94], scalable connection management [175], and RDMA based optimized
support for one-sided MPI operations [70, 69, 65, 166].

Solutions from the this research have been incorporated into two open source distributions:
MVAPICH and MVAPICH2 [108]. These implementations are based on MPICH, MPICH2 and
MVICH stacks. Two versions of this MPI are available: MVAPICH with MPI-1 semantics and
MVAPICH2 implementation with MPI-2 semantics. This open source software was first demon-
strated at SC ’02 and has been steadily gaining acceptance in the HPC and InfiniBand community.
As of March 2006, more than 325 organizations (national labs, universities, and industry) worldwide
have downloaded this software from OSU’s Web site. In addition, many vendors (both InfiniBand
and server) and integrators have been incorporating MVAPICH/MVAPICH2 into their software
stacks and distributing it. Several supercomputers using MVAPICH have obtained high ranks in
the latest November 2005 TOP500 list ranking, most notably the #5-ranked Sandia ThunderBird
cluster with 4,000 nodes (8,000 processors). The latest versions of MVAPICH and MVAPICH2
are also available with the OpenIB/Gen2 stack in an integrated manner. The OpenIB/Gen2 ver-
sion of MVAPICH was used by a large number of vendors on the SC’05 exhibition floor using the
OpenIB-SCINet.

3.3 Directive-based Programming Models

OpenMP uses directives embedded in comments to enable the expression of parallelism.

OpenMP language. The University of Houston (UH) has focused on research to increase the
scalability and range of applicability of OpenMP. We have evaluated its behavior on multithread-
ing [90] and DSM platforms [27], investigating thread placement, overheads and scalability issues.
Our results indicate that a traditional SPMD workload will not provide the best performance where
there is a need to avoid resource contention. We have proposed extensions to define, shape and
exploit subteams [29] of threads, to permit control over thread placement and to provide finer
synchronization. These features help target higher thread counts, tolerate long-latency I/O and
take the hierarchical nature of emerging platforms into account. Some of them are being discussed
by the OpenMP ARB, which is working on OpenMP 3.0. To influence the standard, Chapman
founded ”cOMPunity” [44], which joined the ARB. Chapman is a member of the management
committee that drives the ARB’s efforts, and the team participates in its subcommittees. We have
also collaborated to provide a public-domain Fortran/C/C++ OpenMP validation suite [107]. It
contains a unique crosscheck framework in a user-configurable environment.

8

Compiling for the shared-memory model. We have built an optimizing, portable OpenMP
compiler [129, 89] (C++/C/Fortran and OpenMP 2.5) based on Open64 as a reference implemen-
tation and as a testbed for language research. Features from major branches of Open64 [133, 39]
were integrated and enhanced. OpenUH includes support for OpenMP code creation and is available
for download. We have also developed compiler and run-time technology to improve the scalability
and applicability of OpenMP. Optimizations proposed include translating OpenMP into SPMD
style [96], wide-area array privatization [97], and asynchronous execution [169, 170]. Experiments
showed the benefits of these optimizations [27, 28]. We also translated OpenMP into Global Arrays
[63, 98, 64] for clusters. Advantages of this approach over Software DSM are the efficiency and
precision of data transfers and the ability of the compiler to optimize the generated code.

Hybrid programming model. We extended Sphinx [145] by MPI+OpenMP overheads mea-
surements [136]. We developed an analytical performance measurement framework comprising a
system profile (using Sphinx and Perfsuite [134]) that characterizes system influence on program
performance and an application signature to characterize application behavior [1]. Interactions
between our system and external tools support hybrid programming [50, 153, 171, 134].

3.4 Runtime Systems

3.4.1 ARMCI and Collective Communication for Programming Models

PMODELS research on the ARMCI portable remote-memory copy interface [121, 111] focussed on
enhancements to better support the Global Arrays and GP-SHMEM [132] libraries, Co-array For-
tran, and Co-array Python [139]. Research and development efforts at PNNL and OSU included
latency hiding mechanisms, fundamental technologies for efficient one-sided communication, mem-
ory synchronization, and high-performance collective communication. These technologies have been
incorporated into ARMCI and are available for download in release 1.2.

Latency-hiding mechanisms. The new aggregated communication protocol in ARMCI com-
bines multiple communication calls issued by the user or compiler. Aggregated nonblocking com-
munication, in addition to being effective for latency hiding, reduces the number of network pack-
ets and increases the bandwidth by transmitting larger chunks of aggregated data [123, 121]. We
demonstrated the advantage of this method [122] in the context of a sparse matrix-vector multipli-
cation for one of the matrices from the Harwell-Boeing collection. Another significant addition to
ARMCI was portable one-sided nonblocking communication for contiguous and noncontiguous data
[123]. The effectiveness of these mechanisms for overlapping communication with computations was
validated in scientific benchmarks such as the NAS parallel benchmarks [159], or the SRUMMA
parallel matrix multiplication algorithm [84].

Fundamental technologies for one-sided communication. The efficacy of latency hiding
mechanisms such as aggregated and non-blocking communication depends on their ability to de-
liver performance very close to that of the network hardware. We implemented several new and
portable protocols and methods for implementing one-sided communication efficiently across dif-
ferent networks [123, 124, 109, 116]. Example innovations include the Host-Based NIC-Assisted
(HBNA) method for optimizing noncontiguous communication for InfiniBand Verbs [163] and the
hybrid host and NIC-based method [120] that exploits the programmable network adapter of the
Quadrics QsNetII network [8], and scalable distributed memory synchronization [21].

High-performance collectives. Our research on high-performance collective communication
included developing multimethod topology-aware implementations (Best Paper, IPDPS 2003) [162,
62] and exploiting concurrency at all levels in system and network hardware [160]. These algorithms
showed a significant improvement over the traditional methods used for collective communication.

9

For example, our concurrent algorithm for the allgather operation showed an improvement of 89%
over the traditional method on a Quadrics Elan-4 cluster.

Memory synchronization and management. To support the Co-array Fortran compiler, we
added remote notification mechanisms to signal completion of nonblocking one-sided operations.
To support multilevel parallelism in programming models, we incorporated the concept of pro-
cess groups into ARMCI and added the necessary system-wide memory management by processor
groups/teams [88]. We also implemented a Fortran 95 wrapper library to ARMCI [110] that
supports the Symmetric data objects introduced by Cray, without requiring specialized hardware
or compiler support. Symmetric data objects greatly simplify parallel programming by allowing
programmers to reference remote instance of a data structure by specifying address of the local
counterpart.

3.4.2 GASNet

The GASNet communication layer is used by runtime systems for the Berkeley and Intrepid UPC
compilers, the Titanium compiler, and the Rice CAF compiler. GASNet uses a two-level implemen-
tation model for portability: A small core based on active messages is required for each platform.
The full interface can be implemented in terms of the core (such an implementation is provided),
or parts can be optimized for a given platform. There are optimized implementations for Myrinet
GM, Quadrics Elan 3 & 4, InfiniBand VAPI, IBM LAPI, Cray X1, SGI Altix, Dolphin (done by
the University of Florida [146]), and Cray/SGI SHMEM. In addition, for further portability there
is an implementation on top of MPI and another on UDP for Ethernet.

3.4.3 MPI and Common Communication Systems

During the first round of the PMODELS work, we concentrated on high-performance communi-
cation systems that could support a variety of programming models, including MPI, the PGAS
languages, and others. As part of this work, the ANL team evaluated systems used by PMODELS,
such as ARMCI, GasNET, and the MPICH2 ADI3, and systems used by the broader community,
such as IBM’s LAPI. We considered both the functional requirements of the client programming
models and performance issues. We found that no existing system addresses all of the issues faced
by the current programming models, and designed and prototyped a Common Communication
Subsystem [14]. Also as part of evaluating designs for communication subsystems, the ANL and
OSU groups collaborated to find opportunities for exploiting RDMA and remote operation capabil-
ities [18, 16] and at the efficient implementation of MPI’s one-sided (also called remote memmory
access) operations [70, 92]. These results are described in more detail in section 3.2.2.

These and other investigations indicated that there were many opportunities for improving the
performance of the current communication subsystems used by many MPI implementations. We are
developing a new implementation of the communication subsystem for MPICH2, called Nemesis,
which seeks to minimize the overhead in message passing. On a shared-memory platform, we can
perform an MPI send-receive in roughly 400 instructions and less than 400 ns, the fastest time
reported for an MPI implementation [15].

In addition to the work supported by PMODELS, we have continued to conduct research into
improving the efficiency of MPI. This includes better implementations of the MPI collective oper-
ations [157, 154], which outperform those of several vendors. We have shown how to make use of
the MPI semantics to significantly improve the performance of one-sided operations in MPI [156,
155, 58]; our implementation is up to six times faster than that of the vendor’s MPI. In both the
collective and one-sided cases, the enhanced performance comes from picking and developing better
algorithms than are in general use. The ANL team has also worked on efficient implementations of

10

MPI one-sided operations as a joint effort with OSU for Infiniband [71] and as a joint effort with
IBM for IBM’s BG/L system [4].

To enhance productivity, we have developed three tools that exploit the MPI profiling interface.
One provides runtime checking for the use of MPI collectives [51], exploiting ideas from [59] to
efficiently detect mismatched type signatures. FPMPI2 [57] (www.mcs.anl.gov/fpmpi) provides
concise summary data; its novel feature is the use of message length bins to separate latency
and overhead-dominated operations from bandwidth dominated ones. Jumpshot [172, 26] provides
detailed performance visualization, using a novel scalable (in time) logfile representation to make
it feasible to view logfiles of arbitrary size (tested up to 100 GB).

3.5 Compiling Global View Data-parallel Languages

To generate high-performance code for a data-parallel language, a compiler must exploit parallelism
effectively, balance load, minimize communication frequency and volume, hide communication la-
tency, and generate an efficient node program. To meet this challenge, the dHPF project has
developed a spectrum of program analysis and code generation techniques that enable it to gener-
ate code that matches the performance of expertly-written MPI codes.

Set-based analysis framework. dHPF uses a formal analysis framework to reason about data-
parallel programs by manipulating symbolic sets of integer tuples that represent data indices, loop
iterations, and processors [2]. To support analysis of these sets and mappings between them, dHPF
uses techniques based on integer programming (known as polyhedral methods) for analyzing and
enumerating symbolic sets of integer tuples described by Presburger arithmetic formulas1.

Advanced data distributions. Compilers for data-parallel languages use data distributions to
guide the partitioning of computation among the processors in a parallel system. We developed a
new class of skewed-cyclic block distributions known as generalized multipartitionings for mapping
a d-dimensional data volume onto an arbitrary number of processors and compiler support for using
these distributions (Best Paper, IPDPS 2002) [45, 46]. Multipartitionings enable better paralleliza-
tion of line-sweep computations than HPF’s standard block or cyclic(k) partitionings [165].

Flexible computation partitionings. Compilers for data-parallel languages generally use the
owner-computes rule [140] to partition computation among the processors. The dHPF compiler
uses a more general strategy that enables computation to be partially replicated to reduce com-
munication. For NAS BT, partially replicating computation reduces message volume by 66% and
boosts overall performance by 38% [32, 33].

Communication optimizations. Fast parallel programs require very efficient communication.
A complex loop nest may contain multiple statements with data dependences that constrain com-
munication. To optimize communication for such code fragments, dHPF employs a powerful set of
integrated optimizations. It vectorizes communication out of as many loop levels as possible. It co-
alesces overlapping communications corresponding to the same array to eliminate redundancy [34,
32, 33]. To reduce message frequency, dHPF aggregates communication events for nonoverlapping
data [35, 104]. To tolerate communication latency and process asynchrony, dHPF generates code
that uses split-phase nonblocking communication primitives [35].

Efficient node programs. dHPF uses a code generation strategy based on Fourier-Motzkin
elimination [142, 137, 75] to enumerate points in communication, iteration and processor sets. It
also employs contextual knowledge to simplify control flow [103]. In addition, dHPF optimizes
memory hierarchy utilization through array padding to reduce conflict misses and carefully manages
communication buffers to reduce the cache footprint of off-processor data.

1The dHPF compiler uses Pugh et. al.’s Omega library [74] for this purpose.

11

Evaluation of these optimizations underscores their promise [32]. In 2005, we used Rice’s dHPF
compiler in conjunction with Looptool [138] to generate explicitly parallel code for IMPACT-3D,
a plasma simulation code written in HPF for the Earth Simulator. On 1,024 processors of the
Lemieux cluster at the Pittsburgh Supercomputer Center, the generated code achieved over 17%
of peak [31], which is competitive with the performance of optimized MPI codes on clusters [128].

3.6 Programming Patterns

Work on new programming models is useful only to the extent it focuses on simplifying frequently
performed tasks. A successful methodology for cataloging such tasks is provided by Design Pattern
Languages [55]. These present, in a stylized form, high-quality solutions to frequently occurring
problems in object-oriented programming, organized in a hierarchical and compositional manner.
This approach has been used to document programming practices in many programming areas,
including parallel programming [102], but with only limited participation of the HPC code devel-
opers.

We have recently started an effort aimed at bringing this community together and at providing
a useful catalog of prevalent tasks in programming for HPC [144]. Our first workshop took place
in 2005, and follow-up workshops are expected to occur annually. This effort has led to the iden-
tification of important classes of HPC programming activities that need to be cataloged and has
created a first catalog of such tasks. In particular, we have classified and formalized tasks related to
load balancing, regular and irregular communication patterns, dynamic adaptation of the solution
domain (multigrid, adaptive-mesh refinement, spectral methods, etc.) and so forth.

4 Proposed Work

In this section we describe our research plans. Some of the work is a continuation of work begun
in the first generation of the Center; some represents new or enlarged efforts with the same overall
goals.

4.1 PGAS Programming Languages

PGAS languages (CAF, UPC, and Titanium) and their open source compilers need refinement
to enhance productivity, scalability, performance, and interoperability. The CAF research will be
done primarily at Rice University; the Titanium effort will be at U.C. Berkeley; and the UPC
work will be done as a joint Berkeley/LBNL team effort (with funding predominantly from other
sources). The specifics of the work breakdown by institution are found in the Appendix. In some
cases, we will investigate a common problem in all three languages but explore different solutions
tailored to the different design philosophies and user communities of the languages.

4.1.1 Language Refinements

Function shipping. PGAS languages offer some form of remote read/write or put/get for access
to remote variables. Remotely manipulating complex data structures is inefficient on clusters. We
propose extending all three languages with the ability to spawn asynchronous remote computation
on the node where a data structure resides so that the data can be manipulated locally. Several
open questions remain: should these functions execute atomically? Can they call other remote
operations internally? How are they ranked with respect to remote work?

Hierarchical parallelism. To better support hyperthreaded and multicore processors, we may
wish to relax the current SPMD model used in PGAS languages. We will consider several models,
pursuing different options in the three languages. In CAF we propose to add the ability to spawn
local asynchronous computations with Cilk-like concurrency [54]; in Titanium we will leverage an

12

existing unordered foreach construct to add parallel loops within an SPMD thread; and in UPC
we will add hierarchy to the currently linear set of thread identifiers.

Collective communication. Built-in constructs for collectives not only are a programming con-
venience for programming; but are essential for performance portability. They also enable more
efficient implementations through a combination of compiler and runtime support. CAF lacks
support for collective communication; we plan to add such constructs and extend the Rice cafc

compiler to support them. We will also work with the UPC Consortium on their collective model,
which has a sophisticated set of synchronization flags in the interface to specify whether barriers
are implied as the operation is called or returns. For UPC, we believe that better compiler support
could be used to simplify programming while retaining runtime flexibility. Titanium has a set of
scalar collectives; we will expand this set to include bulk versions as well. In all cases, we will
engineer compiler and runtime systems to select the most efficient implementation of collective
calls for the target communication fabric and use.

Structured teams. Currently, none of the PGAS languages provides a mechanism for a group of
processes to define a team analogous to creating an MPI subcommunicator. CAF’s present notion
of teams is too unstructured to support collective operations on processor subsets. In Titanium,
various analyses conflict with teams, and in UPC, collective memory allocation is problematic
within a team. Teams are critical; they were needed in our UPC implementation of a Delaunay
mesh triangulation code and in LU factorization. We propose to develop constructs for subdividing
the global set of threads into a hierarchy of structured teams, along with support for team-based
collective communication.

Process topologies. We propose augmenting CAF with processor cospaces, which are analogous
to MPI virtual process topologies, along with intrinsics for specifying neighbor relationships. Using
cospace intrinsics to specify communication partners instead of arbitrary functions of processor
indices will make communication patterns more transparent to the compiler, aiding analysis and
optimization of synchronization.

Global-view data structures. UPC and CAF support distributed arrays built from a sin-
gle global-view declaration. However, these abstractions are at a much lower level than multi-
dimensional array layouts in HPF. In CAF, we will explore the implications of extending the
language with support for higher-level HPF-like array abstractions. Titanium has very general
layouts, but distributed data structures are built in two phases: local pieces are allocated and ini-
tialized, and then references to them are exchanged to give all threads a view into all others. This
mechanism can handle arbitrary tilings (e.g., arbitrary 3D tilings and adaptive meshes), but it is
overly general for simple computations. Using data parallel languages as inspiration, we propose
to augment Titanium with support for building collective data structures; this will simplify writing
applications that use uniform meshes and large dense matrices. In UPC we will work with the
community to allow dynamic blocking factors in response to user demand.

Mixed global/local view control. Writing single-threaded programs with data-parallel con-
structs is convenient but not expressive enough for all applications. A fundamental parallel language
question, which the HPCS languages are also addressing, is how to combine the convenience of data
parallelism with the expressiveness of a more general explicitly parallel model. Adding support for
specifying global-view computation will simplify programming in CAF, but a key challenge will be
supporting interoperability between such global-view programming and CAF’s current local-view
model. When mixing global and local view programming in Titanium, compile-time checking must
ensure that all threads are ready to execute a global view computation even though sometimes they
independently execute local code. We will explore language extensions to make this practical.

13

4.1.2 Compiler and Runtime Technology

Refinements to PGAS compiler and runtime technology are needed not only to support the new
features described above but also to enable programs written in a natural, productive style achieve
high performance across a broad range of platforms.

Parallel program analyses. The Titanium compiler has a set of analyses designed for parallel
languages, as described in Section 3.1.3. Currently, alias analysis handles a two-level memory
hierarchy with local and remote, but not a hierarchical model. We propose to extend our analyses
to handle multiple levels of memory. The Titanium analyses rely on the ability to line up barrier
synchronization points at compile-time [3], but in UPC and CAF this is not possible in general.
We will develop analyses appropriate for other synchronization models, perhaps by combining static
information with dynamic checking.

Communication optimization. We propose to extend the PGAS compilers with support for au-
tomatically vectorizing communication, packing data, aggregating messages, and converting block-
ing to non-blocking communication as guided by application, communication library, and platform
parameters. We propose to explore opportunities for transforming gets into puts by understanding
the global structure of synchronization, as is done in an inspector-executor optimization phase in
Titanium [147]. Several of these communication optimizations have been demonstrated in exper-
imental versions of UPC [68, 37] and Titanium [38], but need to be generalized for use in full
applications. In addition, we have found that excessive aggregation and packing can reduce overlap
opportunities, so the optimizations must be guided by performance models [67, 147, 10]

Synchronization strength reduction. Barriers are simpler to use than point-to-point synchro-
nization primitives; however, this simplicity comes at a price: programs using barriers are as much
as 30% slower than counterparts using point-to-point synchronization [48]. We propose to explore
algorithms for safely softening barriers into faster point-to-point synchronization.

Distributed multithreading. Function shipping and multithreading are aspects of distributed
multithreading; adding this support introduces challenges at all levels: refining the memory con-
sistency model, designing a new runtime system to efficiently support both local and remote invo-
cations, and determining at compile time whether remote operations can be combined or whether
a particular remote operation can be handled as an interrupt rather than a thread. We propose to
develop compiler and runtime support for efficient distributed multithreading.

Interoperability. New compiler and run-time support is needed for CAF and Titanium programs
and libraries to interoperate with other programming models. UPC already has a notion of inter-
operability built under PMODELS. The ability to call other library-based models, such as MPI, is
relatively straightforward as long as the runtime layers are compatible. Titanium and UPC support
this model, which has been used to call FFTW [53], Chombo [40], and other packages. Calling
from another model into a PGAS language requires more support. In UPC this was provided by
creating initialization routines that are called explicitly in any application that will make a call
to UPC. We will test our UPC support in numerical libraries being developed under independent
funding and will add similar support to CAF and Titanium.

4.2 Library-based models

Here we describe enhancements to MPI and GA implementations that are particularly relevant to
the programming models they represent.

14

4.2.1 MPI

We will explore two ways to improve the MPI programming model. The first is to improve the
performance of MPI implementations by addressing both communication overhead and scalability.
Reducing message overhead allows applications to use smaller messages and thus finer-grained de-
compositions, thereby increasing both performance and scalability. For massively parallel systems,
there are parts of the MPI specification (such as the graph topology routines) whose interface is not
scalable, and others, such as communicator construction, whose implementations require careful
design to avoid such nonscalable representations as enumerating all processes that are members of
a communicator on all processes. We will develop scalable representations for these data structures
(see also Section 4.2.2).

The second way to improve the MPI programming model is to re-examine some of the design
choices and look at alternatives that better represent the current abilities of parallel computer hard-
ware. For example, the MPI one-sided specification has no fetch-and-increment or compare-and-
swap operation, and implementing these scalably within MPI using only the one-sided operations
is difficult. The lack of these operations makes it difficult to use MPI both in certain applications
and, perhaps more important, as the basic portability layer for other programming models. The
one-sided model of MPI was also designed to make minimal requirements on cache coherence in the
underlying hardware; it is time to consider other consistency models that may simplify the MPI
model and provide additional opportunities for achieving the best possible performance.

We will address the following:

• Efficient implementation of thread-safe MPI (in particular, minimize the use of locks and context
switches and provide smooth interface to multithreaded programming models)

• Better use of topology information in process layout, communication, and implementation of col-
lective communications within MPI (this addresses scalability issues that are becoming apparent
on highly scalable systems such as IBM BG/L)

• Enhanced one-sided operations, for example, possible extensions to MPI, including one-sided
read-modify-write operations

• Low-overhead implementation of MPI operations. By paying close attention to the implementa-
tion, we can significantly reduce the overhead of MPI (we are currently at 339 ns for a zero-byte
send-receive on a 2.4 GHz dual processor Opteron using shared memory). Reducing the overhead
of MPI calls can improve the scalablity of applications that use MPI and are dominated by short
messages.

In addition, interoperation with other programming models is needed; this is discussed in Sec-
tion 4.4.6.

Related to the work on MPI is work on providing better support to MPI programmers in
handling distributed data structures. MPI provides the tools for programming with arbitrary data
structures distributed over arbitrary sets of processes but provides no aids to help the programmer
with this task. Joint work with the effort on Programming Patterns (Section 4.6) and annotations
(Section 4.3.3) will develop tools to aid in the management of distributed data structures, including
unstructured meshes, graphs, and distributed arrays.

4.2.2 Global Arrays

Work in Global Arrays will address two issues: improving scalability and single-node performance,
and enhancing programmer productivity. This work will be primarily pursued at PNNL and OSU.

In the first phase of the PMODELS project, prototype support for multilevel parallelism has
been developed for GA [118] and was shown to improve scalability in benchmarks and applications

15

[82, 127, 176]. Multi-level and hierarchical parallelism offers additional opportunities for scientific
applications to exploit the forthcoming petascale systems. We will extend this capability to the
full set of functionality in GA and harden it for production use. We will develop additional func-
tionality to help improved scaling at the application level, for example nonblocking or split-phase
team synchronization operations that work in the context of processor groups. The GA toolkit
was originally developed to support system configurations with up to 2000 processors. Internal
enahcements in the implementation of GA will be necessary to support the forthcoming petascale
systems. For example, we will exploit a new global memory allocation scheme proposed for ARMCI
(see Section 4.4.4) to reduce the size of the internal data structure that represents a global array
(O(P) memory consumption systemwide).

To improve single-node performance we will offer additional locality and data layout optimiza-
tions for distributed arrays in GA, for example by exploiting tiling or topology-aware mapping that
has been recently prototyped [36]. In addition, we will develop support for mixed mode-parallelism
for multicore processors based on threads and OpenMP models.

To enhance programmer productivity and improve application performance, we will develop
a taskpool model that provides a high-level mechanism for load balancing for GA and GA/DRA
applications. Such a model facilitates locality-conscious load balancing because the location of
global data accessed by each task is explicitly known. Further, since the granularity of the task is
controllable by the user, it is feasible to balance the communication and scheduling overheads with
the degree of load balancing achieved. We plan to implement both static and dynamic approaches
to load balancing. The taskpool model is particularly attractive for multicore systems: distinction
between intranode parallelism (within a multi-core processor chip) and internode parallelism (across
different chips) can be kept transparent to the programmer, but the actual mapping of tasks to
processors can fully exploit intranode locality. Optimizations of the taskpool model for multicore
processors will be pursued. An initial proof-of-concept exploration of the taskpool approach carried
out using the PaTOH hypergraph partitioner [25, 24] for communication minimization [79, 78] has
produced promising results.

One of the features most frequently requested by application developers is support for more
complex and dynamic data structures in Global Arrays. We will develop interfaces allowing users
to specify more complex data structures. A prototype implementation has been developed over
ARMCI, to support a class of block sparse matrices used in ab initio quantum chemistry [80] in
the the Tensor Contraction Engine (TCE) domain-specific compile/runtime system [5, 7].

Another proposed enhancement is the development of XGA (eXtended Global Arrays) [11], a
transparent access interface to in-memory data and on-disk array data. The current GA/DRA
model has an explicit collective-call interface to move multidimensional blocks of data between
GA and DRA [112, 52]. It would be much more convenient for programmers if a single interface
were available and movement of data between disk and memory were handled automatically by the
system. We will develop both compile-time optimizations and run-time caching and aggregation
optimizations to attain good performance.

In addition, we will provide better support for compilers that use GA as the compilation tar-
get, such as the OpenMP compiler from U. Houston, the global-address-space MATLAB system
GAMMA [131], and the Tensor Contraction Engine. Part of this effort will involve exposing ac-
cess to the global array data structures through ARMCI that will enable use of more advanced
communication interfaces in ARMCI, such as the aggregate handle nonblocking communication.
This capability will be useful for optimizing performance of the OpenMP compiler for clusters. We
will also work with DARPA HPCS vendors (IBM, Cray) on interoperability of GA with proposed
languages such as X10 and Chapel. One of the goals is to provide GA distributed array capabilities
as enhancements to these languages.

16

4.3 Directive-based Programming Models

Here we describe our proposed work in three areas where a programming model is primarily ex-
pressed in directives (comments) embedded in serial code.

4.3.1 OpenMP Language

Work is needed if OpenMP is to retain its productivity benefits, be highly suitable for exploiting
multithreading SMPs, provide scalability on hierarchically parallel platforms, and interoperate
smoothly with other high-end programming models. Issues that we will work toward include:

• To enable the expression of higher levels of parallelism and to enable it to help overcome thread
resource contention, OpenMP requires more flexible means of assigning work to threads. In
particular, the worksharing construct requires additional power. Multilevel parallelism needs to
be expressed without the overheads of the dynamic nested parallelism.

• OpenMP must be adapted to better fit the hierarchical parallelism of new platforms. It will need
to be able to express mappings of threads to parts of a machine, either directly or indirectly,
especially for a cluster implementation. An abstract machine description is one possibility; an-
other is to impose structure on the threads in a given team, possibly with additional information
that helps the compiler/run time determine appropriate thread bindings. Data distributions for
clusters might come in the form of library routines or via the addition of a new data attribute.

• Synchronization options in OpenMP are limited and often lead to lmany barriers at run time.
More efficient and scalable methods for expressing synchronization, such as atomic blocks, need
to be explored in the context of OpenMP. The concept of clocks might be used to help the
expression of a variety of concurrent workloads. Synchronization between individual threads
and between subteams of threads should be facilitated.

• The ability of other programming models to interact with OpenMP needs to be properly explored,
from the suitable placement of processes and threads across a platform via the compatibility of
language constructs to the tnread safety of their implementation.

• Language features for object-oriented programming need to be more thoroughly evaluated, as
does the problem of robustness. OpenMP does not directly report on errors at run time, instead
relying on the programmer to insert tests. This approach needs to be reconsidered.

4.3.2 OpenMP Compiler and Tools Technology

We have created a portable reference compiler for OpenMP based upon Open64. We will continue
to improve our compiler and run-time system technology throughout this project and will develop
new techniques to support our language research. We will exploit the project’s runtime substrate
for our cluster implementation and will work with partners to implement hybrid programming
models. In particular, we will address the following issues:

• OpenMP compiler technology requires further work to improve the optimization process, in
particular to better deal with the problems posed by loop nests and false sharing. This requires
extending traditional compiler analyses to directly take into account the architecture and the
programming model.

• More compile-time work is needed to enable OpenMP to be successfully implemented on clusters.
Particular attention needs to be paid to the translation of sequential regions, optimization of
communication, and handling of synchronization, which may be much improved via the proposed
new language features.

17

• The compiler needs to be provided with a cost model that describes multithreading platforms.
This model may be used for a variety of improvements including setting application and target
machine specific execution defaults. To support dynamic modifications, the compiler’s own
runtime environment needs to be extended to support adaptive execution modes.

4.3.3 Annotations

Program annotations allow the programmer to add semantic information or code generation hints
to a source code. Annotations are similar to directives in extending the base language, but are
different in usually being applied through source-to-source transformations. For example, a simple
annotation may mark a loop as using aligned data (suitable for extra-wide load and store instruc-
tions or extra floating point units, as in IBM’s BG/L); a more complex annotation might describe a
distributed array [141]. The advantage of using source-to-source transformations is that extending
and customizing the language through annotations can be done independent of the base compiler.
By taking advantage of this separation of concerns, it is possible to more rapidly develop and
deploy extensions. We have found this approach particularly valuable for the IBM BG/L, where
annotations have allowed us to significantly improve the performance of some application kernels.

A disadvantage with a simple approach based on blind transformation of the source is that
the user can easily err in applying the annotation (for example, forgetting to use an annotation
on a variable for which the annotation is providing global-view semantics). In addition, for com-
plex transformations (such as the application of loop restructuring), a common “metalanguage” is
needed to provide interoperability with transformation tools. Thus, annotations fit between the
full-featured support possible when such features are completely integrated within the language (as
in our work with CAF and Titanium) and the manual code development faced by programmers
using library-based models. Annotations do offer a faster way to experiment with new distributed
data structures and code generation techniques. As part of this work, we will develop an advanced
annotation system to address single-node (including multicore) performance through targeted code
transformations (building on existing tools, such as loop restructuring tools), productivity of MPI
programmers through the addition of global-view and communicator-view annotations, and ro-
bustness of annotated software through the use of compilation tools to enable stronger checks of
annotation correctness and completeness.

4.4 Runtime Communication Substrates

The proposed activities will include enhancements to the runtime support for MPI, Global Arrays,
and PGAS languages. In particular, our research will be directed toward the following goals:

• Enabling scalability to very large processor configurations (100K+), in particular the emerging
petascale architectures

• Achieving highest-possible performance on hardware of interest to DOE

• Providing interoperability between the programming models represented in the project

• Enabling portability across a broad range of architectures and networks

We will work on achieving these goals within ARMCI, GASNet, and the MPI Communication
Subsystem. Of particular importance to our project are one-sided and collective communication
operations as they are required for implementation of different programming models in the project.

4.4.1 Support for Emerging Systems

We will continue development and optimization of high-performance implementations of our com-
munication interfaces on new networks, such as the next-generation Quadrics, Myrinet, and Infini-

18

band, and on major terascale and petascale architectures that emerge during the project, starting
with IBM BlueGene, Cray XT3, and IBM LAPI. The Berkeley, PNNL and Argonne groups will
collaborate closely on a optimized runtime support for BlueGene systems from IBM that satisfy
the needs of the various runtime clients. Our IBM LAPI effort for the Power architecture line is a
part of an ongoing collaboration with the LAPI team at IBM [143], through which we influenced
the design of the new RDMA API in LAPI to reflect runtime requirements of PMODELS project.
Multicore architectures are emerging as building block of choice for high-end systems, with the
expectation that the number of cores per chip will double every two years. We plan to explore
new designs that can dedicate one or more communication threads per core to achieve faster com-
munication progress. These communication threads can be utilized by several capabilities in the
runtime system including collectives, datatype processing engine (including zero-copy schemes),
and one-sided synchronization implementations.

We will address scalability limitations in the design of MPI point-to-point two- and one-sided
(MPI and ARMCI) operations to support the emerging systems with very large processor counts
(100K+). For example, with InfiniBand, Shared Receive Queue (SRQ) mechanism can be used [150]
to reduce buffer memory consumption for reliable protocols. This mechanism can also be used
together with connection-less and on-demand connection management protocols [175] to achieve
further scalability since these schemes do not require posting of buffers for every queue pair.

4.4.2 One-Sided Communication

The PMODELS team has been instrumental in showing the benefits of one-sided communication
for exposing the highest possible performance of underlying network and translating this advantage
into performance advantages at the application level [83, 85, 10, 47]. Such performance depends on
having highly tuned implementations, which we will continue to develop for the strategic network
architectures of interest to DOE.

High-performance implementations of noncontiguous data transfers are critical to the perfor-
mance of CAF, GA, and Titanium and will remain an important element of our effort. We will
introduce more flexible iterfaces in ARMCI, allowing users to specify aggregation of contiguous
and noncontiguous messages to improve performance for more complex data transfers occuring for
example for block-sparse data structures.

Our current work on MPI one-sided communication for Infiniband [70, 69, 65] exploits RDMA
and atomic operations in InfiniBand. We will also investigate several scalable algorithms to alleviate
the performance and scalability bottleneck in one-sided operations with active synchronization.

4.4.3 Collective Operations

Collective communication is featured in each of our programming models. As the number of
processors in high end systems grows, and full bisection bandwidth becomes prohibitively expensive,
we expect to need more clever collective algorithms to deliver scalability and efficiency.

In preliminary work on MPI [93, 101, 100, 152, 149], we have shown the benefits of InfiniBand
features such as Hardware-Multicast and have improved collective protocols using RDMA. We plan
to consider several new and challenging design options, such as design of collectives over point-
to-point UD-transport, to deal with resource scalability constraints, and the dynamic connection
model for MPI where only certain processes communicate via reliable connection oriented chan-
nels of IBA(RC-transport). In addition, we will consider the dynamic usage of RDMA Write and
RDMA Read and application-bypass capability [105, 174, 19, 20, 16, 17, 18] to design high perfor-
mance collective communication support with asynchronous progress.

Information about the system topology and task mapping is critical for optimizing performance
of collective operations [161]. InfiniBand defines several management classes that are responsible

19

for managing various features of the network; we will exploit them in our design. Information
about the topology and task mapping will be used in designing efficient collective communication
algorithms by avoiding hot-spots and exploiting network proximity and concurrency (for example,
by exploiting multiple paths in the network [160], including creation of hardware multicast groups
on Infiniband and using these for other collective operations).

We will also optimize collective communication in GASNet, which includes a a form of non-
blocking collective to allow global operations to be performed without global synchronization. Given
the enormous design space for implementing this functionality and the differing system character-
istics, we plan to use performance models and, if necessary, search-based self-tuning mechanisms
to automatically select implementations at installation time.

4.4.4 Memory Management

Memory management is one of the most subtle features of these runtime systems, and different
programming models have different demands. At one extreme, Titanium does not distinguish
private and local space and gives control of memory management to a standard conservative garbage
collector [12].

We will develop a new memory allocator in ARMCI for globally addressable memory to address
the scalability shortcomings of the current interface. For example, to allocate memory for a global
array O(P 2) pointers are needed systemwide, clearly not scalable. The new scheme will be based
on pointer virtualization and will use only O(P) pointers systemwide.

Our initial GASNet port for the Cray XT3, done in collaboration with Cray, will support
a mode of GASNet (partitioned private/shared memory) that is suitable for UPC, but not for
Titanium. We will extend that implementation with support for the GASNet Firehose algorithm,
which supports dynamic registration and deregistration of memory and caches information about
remote registration tables to save on overhead [9].

4.4.5 Functionality Enhancements

Extensions of our PGAS languages and GA for remote function invocation in turn require extensions
to the runtime systems. We will explore different levels of generality and implementation techniques
and identify design trade-offs.

Our ARMCI effort will be directed toward the Global Procedure Calls (GPC) capabilities
recently prototyped in ARMCI. GPCs allow an application to specify a handler function that can
modify globally addressable data without specifying the process that would execute it and without
relying on polling to achieve progress. GPCs will be used to support work forwarding as well as
other advanced capbilities such as I/O and sparse and dynamic data structure processing.

Hints will be added to allow compilers and libraries accessing ARMCI provide context infor-
mation that can be used internally to optimize the usage of resources (internal message buffers)
or select appropriate low-level data transfer protocol (e.g., host-based or NIC-based packing for
noncontiguous data). We have realized the importance of these optimizations when optimizing
communication in SRUMMA matrix multiplication [84, 83, 87, 86].

GASNet is already suited to a limited form of remote function invocation, because of its use of
an active message [167] model at the core. That experience has revealed a number of nontrivial
semantic issues, such as potential deadlocks if handler functions, which run without preemption,
can acquire locks or initiate communication. This is addressed by limiting the functionality of
handlers, for example, by creating a separate virtual network for handler response messages and
using only handler-safe locks.

20

Figure 1: A 3D generalized tiling.

 b(i) = a(i) + w * a(i+m)
 b(i+m) = a(i) − w * a(i+m)
 DO i = k, k+m−1

! a single butterfly instance

DO k = 1, n, 2m
! multiple butterflies

DO l = 1, levels

distribute b(block) onto P
distribute a(block) onto P

Figure 2: Global-view FFT code fragment.

4.4.6 Interoperability

We will develop interoperable communication subsystems, rather than a single common runtime
communication system. Among the major issues in interoperability [14] are the initialization and
finalization of the communication subsystems (such as memory registration for RDMA operations)
and the definition of a common notification interface that can pass the communication event to the
appropriate subsystem for further processing. Another important issue is the efficient management
of the system resources such as ports on the network interface or pinned memory segments. Each
communication subsystem needs to discover what processes belong to the parallel job; this requires
a common or at least interoperable process management interface. For optional features, a common
introspection interface will be developed to allow communication subsystems to determine what
functionality they will need to provide and what they can leverage on the underlying system.

4.5 Compiling Global View Parallel Language Models

Global view models based on data-parallelism (e.g., Parallel Matlab) are a promising approach
to improving programmer productivity. (A global-view language model is one in which compu-
tation is conceptually single threaded, data is globally accessible and communication is implicit.)
However, mapping such models efficiently onto distributed-memory machines is difficult. It is an
underconstrained problem that benefits from user guidance, including specifications for data layout
(alignment and distribution) and data/computation affinity. HPF is an example of a global-view
language designed over a decade ago based on this strategy. Today, emerging HPCS languages
(Cray’s Chapel [22], IBM’s X10 [30], and Sun’s Fortress [148]) embrace HPF’s support for locality-
aware programming by using data distributions to map global view programs onto parallel systems.

Achieving high performance with global view languages requires partitioning work effectively,
colocating data and computation, minimizing communication, and synthesizing efficient node pro-
grams. As part of DARPA’s HPCS program, Cray, IBM, and Sun are exploring compiler and
runtime technology for mapping global view languages to custom tightly coupled architectures. We
propose to build on a decade of research on locality-aware compilation for HPF to compile more
general global-view programs into efficient code for commodity distributed-memory platforms. Rice
University will lead this research in collaboration with PNNL. Below, we outline three of the key
challenges we will address.

Analysis and code generation for user-defined tiling distributions. A principal (and
fair) criticism leveled at HPF was that the set of data distributions it supported was too limited.
Chapel and Fortress propose to expand the set of data distributions available to user-defined hyper-
rectangular partitionings of Cartesian domains such as the one shown in Figure 1. With such
tilings, a tile may have neighboring tiles of various sizes and alignments. We propose to extend
the set-based analysis framework developed for the Rice dHPF compiler to handle analysis and

21

code generation for such user-defined distributions. Our goal is to preserve the property of being
able to statically generate symbolically parameterized code that enumerates the elements to be
communicated between a pair of tiles. Managing such tilings efficiently will require tight integration
between the compiler and runtime system.

Efficient computation partitioning of complex global view programs. Generalizing com-
putation partitioning methods to complex loop nests with nonrectangular iteration spaces is a
major challenge. Consider the iteration space of the FFT code shown in Figure 2. Partitioning
the computation of the i loop involves restricting its bounds to the data elements mapped to a
particular processor node; this is a well-understood application of the owner computes rule. Par-
titioning the k loop involves having each processor execute only the iterations whose i loops touch
local data; its bounds must be inferred indirectly. Since the data is partitioned, some iterations
in a processor’s [i,k] iteration space will access non-local data. For this code, data dependences
permit the region of a processor’s [i,k] iteration space that accesses non-local data to be split off
from other iterations to enable communication to be overlapped with computation. Realizing this
overlap for FFT’s symbolically parameterized, strided, nonrectangular iteration space and mapping
it onto p processors where p != 2k is fiendishly difficult. From this example, one begins to get a
sense for when a formal framework for analysis and transformation is useful. We propose to explore
the challenges in generating efficient partitioned loop nests for global-view programs with complex
iteration spaces.

Compiling tightly coupled global view programs. A tightly coupled loop is one that both
produces and consumes data values for an overlapping set of array elements; such loops are the
hardest to parallelize by hand. For distribution-based global view languages to succeed, it must
be possible to write such loops in these languages and compile them into efficient parallel code
for distributed-memory systems. To understand the challenge, consider compiling a global-view
implementation of Gaussian elimination with partial row pivoting for a distributed memory system.
For highest parallel performance, the serial work of computing a row pivot should be overlapped with
the parallel work of performing an elimination step on a submatrix. Achieving such a parallelization
requires understanding the data dependences in the code, understanding the serialized nature of the
pivot computation, and then radically restructuring the code by applying iteration space splitting
in conjunction with a software pipelining transformation to compute the next pivot as early as
possible so that it can be overlapped with parallel elimination work. Such code generation is well
beyond the capabilities of today’s parallel compilers. We propose to explore the full range of code
generation challenges for such tightly coupled global view loop nests.

4.6 Programming Patterns

In the past year, we began regular workshops on Patterns for High Performance Computing, estab-
lished a centralized portal for this effort, and started expanding the catalog of collected patterns.

We expect to expand this activity by continuing with yearly workshops, engaging a broader
community of DOE practitioners in the effort and expanding the catalog of documented patterns.
A significant part of this effort will focus on patterns that document the activities of performance
oriented programmers: “performance” is the middle name of high performance computing, and a
significant amount of programming time in HPC is spent on performance tuning. We do not believe
that compiler technology can replace expert performance tuners; rather, we expect better support
for tuning in the new programming paradigms (e.g., via annotations).

Consider a simple example: one must often merge multiple parallel tasks into one sequential
task, so that the number of tasks equal or be a small multiple of the number of processors. This
“task coarsening” pattern is often easily supported in OpenMP (a parallel loop is replaced by a

22

sequential loop) but may require significant code rewriting if MPI or PGAS languages are used;
the ability of different models to support such a pattern will not be apparent from examples of
code but will be apparent if the pattern is documented and illustrated in the different proposed
programming models.

We will produce an increasing catalog of parallel programming patterns, illustrated using the
various programming models studied under this project. The final outcome will be a pattern
language for high-performance computing: that is, a structured catalog of prevalent programming
patterns for HPC, illustrated using some of the programming models of this project. In addition, we
will produce a “synoptic table” illustrating for the most important patterns how they are handled in
each of the proposed models. This table will be a measure of the expressiveness of the programming
models—their ability to support well the most common activities of HPC programmers.

We will collaborate with the annotation effort described in Section 4.3.3 to ensure that key
patterns are captured by the proposed annotations.

5 External Interactions

5.1 Co-Array Fortran Features in the Fortran Standard

The Rice PMODELS team has been engaged in a dialog with the Fortran J3 standardization
committee, which is considering the addition of co-array language constructs into the Fortran
2008 standard. Rice will continue to work with the committee to ensure that the set of language
constructs adopted as part of the standard are appropriate. Having co-array features as part of the
Fortran standard will reassure applications scientists that developing codes using Co-array Fortran
will not be a wasted investment and that they can count upon its long-term availability. Rice’s
open-source cafc compiler will serve as a reference implementation that will provide a model for
vendors adding support for co-array features to commercial Fortran compilers.

5.2 Work with the OpenMP Architecture Review Board

OpenMP is maintained by the OpenMP Architecture Review Board (ARB), an organization to
which most hardware vendors, several software companies, and major users belong. The project
team at the University of Houston has been actively involved in the work of the ARB since the first
year of PMODELS and has participated in language and tools committees. OpenMP is under active
development and is expected to evolve in the near future to meet the needs of new architectures
and applications. The Houston team will continue to work on the ARB subcommittees, where
it will focus on efforts to improve the expressivity and scalability of the language for scientific
computing. In particular, the team will champion features to ensure that the language is better
able to address the needs of multithreading architectures, to provide higher levels of expressivity,
and to enable the appropriate expression of locality. Error-handling features, better support for
object-oriented applications and support for tools are also of major concern. The new features must
not compromise the high level of productivity that is one of the major benefits of this API. The
Houston team will provide reference implementations of proposed language features within their
OpenUH compiler infrastructure in order to demonstrate their usefulness.

5.3 The UPC Consortium

The PMODELS groups from LBNL and ANL have worked as part of the UPC Consortium (a group
from academia, industry and government labs) on the UPC language specification, specifically the
definition of a parallel I/O interface for UPC and an initial prototype implementation. LBNL has
also been active in the specification of UPC collectives and the UPC memory model and is working
with the University of Florida to interface their performance tool work to the Berkeley compiler.

23

5.4 DARPA High Productivity Computing Systems

Several of the participants in this group also work with the DARPA High Productivity Computing
Systems Project. We are evaluating the DARPA-funded, vendor-designed HPCS languages (X10,
Chapel, Fortress), developing compilation and communication techniques likely to be of use in
implementing such languages, and developing the PGAS languages described here as potential
transition languages to one or more future generation HPCS languages.

5.5 Applications

The UPC group plans to work closely with Andrew Johnson at AHPCRC, who has developed a
large CFD application in UPC for the Cray X1E, and would like to port it to clusters. The UPC
group is also working on a sparse direct solver in UPC, with the long term objective of using it in the
TOPS project and in accelerator modeling, and on the use of one-sided communication to optimize
AMR codes from Phillip Colella’s groups at LBNL. The Titanium project has an AMR benchmark
developed jointly with Colella’s group and a heart simulation developed in collaboration with
Charles Peskin’s group at NYU. In addition, many applications groups use PMODELS software,
in particular MPI, without the direct involvement of the PMODELS team.

Within the DOE community, the Global Array library has been deployed in multiple applica-
tion areas such as chemistry (the NWchem, Molpro, COLUMBUS, Molcas, GAMESS-UK projects),
structural biology (in the project Data Intensive Computing for Complex Biologogical Systems),
astrophysics (at ORNL), atmospheric chemistry of aerosols (PEGASUS project), bioinformatics
(ScalaBLAST code). We will explore new collaborations with application scientists regarding de-
ployment of Global Arrays in their codes. Recently a new effort was started to parallelize a visual
analytics code InSPIRE (R&D-100 award winner in 1996) using Global Arrays, and this effort will
also use a prototype of global procedure calls in ARMCI.

5.6 Interactions with Computer Vendors

OSU has been closely interacting with primary InfiniBand vendors (Mellanox, Cisco/Topspin,
Voltaire, Silverstorm and PathScale), major server vendors (Intel, AMD, Sun, and IBM), ma-
jor systems integrators (Linux Networx, Appro and Microway), and ISVs (such as Fluent). OSU
and LBNL have also worked with Etnus to have Totalview support for MVAPICH and Berkeley
UPC, respectively. OSU is also closely working with the OpenIB consortium and the latest releases
of MVAPICH and MVAPICH2 are currently available as an integrated part of the OpenIB SVN
repository. LBNL is working with Cray on XT3 compiler support and with IBM on the evaluation
and use of their RDMA support in GASNet. PNNL has been working with Cray and IBM on
enhancements of their low-level communication layers as required for efficient support of one sided
communications. Argonne collaborates with IBM, Cray, Intel, and Microsoft on MPI. All of them
use MPICH2 as the core of their vendor-supplied MPI implementations. UH collaborates with
Intel, Sun, IBM, SGI and other vendors on the OpenMP ARB with respect to OpenMP language,
compiler and runtime issues.

6 Milestones

The detailed milestones for the work proposed here are described in the Appendix on a per-
institution basis. Here we give a representative summary.

Year 1: Establishing the software base. Thread-safe MPI and ARMCI for interoperability.
GASNet and ARMCI for BlueGene. Release of open source Titanium and cafc compilers.
Prototype GA taskpools and XGA. New MPI release with Infiniband-specific collective com-
munication. Thread subteams in OpenMP. Patterns workshop featuring MPI. New Web site.

24

Year 2: Focusing on global view of data. MPI extensions for remote memory access. User-
defined global data structures in Global Arrays and Titanium. Compilation for global view
with multi-level data structures. Locality awareness in OpenMP. Patterns workshop on single-
node performance with annotations.

Year 3: Ensuring performance on leadership class machines. Topology awareness in MPI
specification and Infiniband implementation. Multicore support in Global Arrays and Tita-
nium. cafc compiler for leadership-class machines. Static and dynamic load balancing for
GA tskpools, data aggregation for XGA. Enhanced synchronizations in OpenMP. Patterns
workshop featuring a PGAS language.

Year 4: Adding Further Optimizations and Interoperability. MPI and GA for multicore
systems. Optimization of ARMCI for leadership class machines. Self-tuning infrastructure for
GASNet, hence UPC and Titanium. Compiler support for interoperability. GA taskpools for
DAGs. OpenMP interoperability with MPI, GA, and PGAS languages. Workshop on patterns
in PGAS languages for hierarchical machines.

Year 5: Rounding off. Second-generation annotations for single node performance. Port of
ARMCI to DARPA HPCS systems. Release of full Titanium compiler for 10K or more
processors. Interoperability between global view models (like HPCS languages) and PGAS
languages. GA taskpools and XGA release. MPI on ultrascale Infiniband clusters. OpenMP
on large platforms. Patterns book.

7 Project Management

The participants have worked well together during the first generation of the Center, and there
has been considerable exchange of technology. We will coordinate with one another through yearly
meetings and monthly conference calls, augmented by more intense interactions (visits, email con-
versations) on particular topics. The Center will maintain a Web site that will publicize Center
publications, open source software related to the Center, and other working documents.

25

References

[1] L. Adhianto and B. Chapman. Performance modeling and analysis of hybrid MPI and
OpenMP applications. Technical report, University of Houston - Department of Computer
Science, 2006.

[2] V. Adve and J. Mellor-Crummey. Using Integer Sets for Data-Parallel Program Analysis and
Optimization. In Proceedings of the SIGPLAN ’98 Conference on Programming Language
Design and Implementation, Montreal, Canada, June 1998.

[3] A. Aiken and D. Gay. Barrier inference. In Principles of Programming Languages, San Diego,
California, January 1998.

[4] G. Almási, C. Archer, J. G. C. nos, J. A. Gunnels, C. C. Erway, P. Heidelberger, X. Martorell,
J. E. Moreira, K. Pinnow, J. Ratterman, B. SteinmacherBurow, W. Gropp, and B. Toonen.
Design and implementation of message-passing services for the Blue Gene/L supercomputer.
IBM Journal of Research and Development, 49(2/3):393–406, March/May 2005. Available at
http://www.research.ibm.com/journal/rd49-23.html.

[5] A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao,
R. Harrison, S. Krishanmoorthy, S. Krishnan, C.-C. Lam, M. Nooijen, R. Pitzer, J. Ramanu-
jam, P. Sadayappan, and A. Sibiryakov. Automatic code generation for many-body electronic
structure methods: The Tensor Contraction Engine. Mol. Phys., 104(2):211–218, 20 January
2006.

[6] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow. The NAS
parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames Research Center, Dec.
1995.

[7] G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao,
R. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen, R. Pitzer,
J. Ramanujam, P. Sadayappan, and A. Sibiryakov. Synthesis of high-performance parallel
programs for a class of Ab Initio quantum chemistry models. Proceedings of the IEEE,
93(2):276–292, 2005.

[8] J. Beecroft, D. Addison, D. Hewson, M. McLaren, D. Roweth, F. Petrini, and J. Nieplocha.
Qsnetii: Defining high-performance network design. IEEE Micro, 25(4), 2005.

[9] C. Bell and D. Bonachea. A new DMA registration strategy for pinning-based high per-
formance networks. In Workshop Communication Architecture for Clusters (CAC03) of
IPDPS’03, Nice, France, 2002.

[10] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing bandwidth limited problems
using one-sided communication and overlap. In 20th International Parallel and Distributed
Processing Symposium (IPDPS), Apr. 2006. Also available as Lawrence Berkeley National
Lab Tech Report LBNL-59207.

[11] D. Bernholdt, J. Nieplocha, and P. Sadayappan. Raising the level of programming abstraction
in scalable programming models. In Proceedings of the HPCA Workshop on Productivity and
Performance in High-End Computing. IEEE Computer Society, 2004.

[12] H. Boehm and M. Weiser. Garbage collection in an uncooperative environment. Software
Practice and Experience, pages 807–820, Sept. 1988.

26

[13] D. Bonachea. GASNet specification, v1.1. Technical Report UCB/CSD-02-1207, University
of California—Berkeley, 2002. Updated v1.6 specification available at http://gasnet.cs.

berkeley.edu/dist/docs/gasnet.pdf.

[14] D. Buntinas and W. Gropp. Designing a common communication subsystem. In B. D.
Martino, D. Kranzluüller, and J. Dongarra, editors, Recent Advances in Parallel Virtual
Machine and Message Passing Interface, number LNCS 3666 in Lecture Notes in Computer
Science, pages 156–166. Springer Verlag, Sept. 2005. 12th European PVM/MPI User’s Group
Meeting, Sorrento, Italy.

[15] D. Buntinas, G. Mercier, and W. Gropp. The design and evaluation of Nemesis, a scalable
low-latency message-passing communication subsystem. Technical Report ANL/MCS-TM-
292, Argonne National Laboratory, 2005.

[16] D. Buntinas and D. K. Panda. Implementing NIC-level support for atomic operations in
Myrinet. In SAN-1 Workshop, held in conjunction with HPCA-8, 2002.

[17] D. Buntinas and D. K. Panda. NIC-based reduction in Myrinet clusters: Is it beneficial? In
SAN-02 Workshop (in conjunction with HPCA), Feb 2003.

[18] D. Buntinas, D. K. Panda, and R. Brightwell. Application-bypass broadcast in MPICH over
GM. In Proceedings of Cluster Computing and Grid ’03), May 2003.

[19] D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-level barrier over Myrinet/GM. In
Proceedings of Int’l Parallel and Distributed Processing Symposium (IPDPS), 2001.

[20] D. Buntinas, D. K. Panda, and P. Sadayappan. Performance evaluation of NIC-level barrier
over Myrinet/GM. In Proceedings of Int’l Workshop on Communication Architecture for
Clusters (CAC), 2001.

[21] D. Buntinas, A. Saify, D. Panda, and J. Nieplocha. Optimizing synchronization operations for
remote memory communication systems. In Parallel and Distributed Processing Symposium,
page 8 pp., 2003. TY - CONF.

[22] D. Callahan, B. L. Chamberlain, and H. P. Zima. The Cascade high productivity language.
In Proceedings of the 9th International Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS’04), Santa Fe, NM, Apr. 2004.

[23] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, and K. W. E. Brooks. Introduc-
tion to UPC and language specification. Technical Report CCS-TR-99-157, IDA Center for
Computing Sciences, May 1999.

[24] U. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decomposition for parallel
sparse-matrix vector multiplication. IEEE TPDS, 10(7):673–693, 1999.

[25] U. V. Çatalyürek and C. Aykanat. PaToH: A Multilevel Hypergraph Partitioning Tool, Ver-
sion 3.0. Bilkent University, Department of Computer Engineering, 1999.

[26] A. Chan, D. Ashton, E. Lusk, and W. Gropp. Jumpshot-4 users guide. http://www-
unix.mcs.anl.gov/perfvis/software/viewers/jumpshot-4/usersguide.html, June 2003.

[27] B. Chapman, F. Bregier, A. Patil, and A. Prabhakar. Achieving high performance under
OpenMP on ccNUMA and software distributed share memory systems. Concurrency and
Computation Practice and Experience, 14:1–17, 2002.

27

[28] B. Chapman, A. Patil, and A. Prabhakar. Performance oriented programming for NUMA
architectures. In OpenMP Shared Memory Parallel Programming: International Workshop
on OpenMP Applications and Tools, WOMPAT 2001, pages 137–154. Springer-Verlag Hei-
delberg, 2001.

[29] B. M. Chapman, L. Huang, G. Jost, H. Jin, and B. R. de Supinski. Support for flexibility and
user control of worksharing in OpenMP. Technical Report NAS-05-015, National Aeronautics
and Space Administration, October 2005.

[30] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun,
and V. Sarkar. X10: an object-oriented approach to non-uniform cluster computing. In
OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pages 519–538, New York, NY, USA, 2005.
ACM Press.

[31] D. Chavarŕıa-Miranda, G. Jin, and J. Mellor-Crummey. COTS clusters vs. the Earth Sim-
ulator: An application study using IMPACT-3D. In Proceedings of the 19th International
Parallel and Distributed Processing Symposium (IPDPS 2005), Denver, CO, Apr. 2005.

[32] D. Chavarŕıa-Miranda and J. Mellor-Crummey. An evaluation of data-parallel compiler sup-
port for line-sweep applications. In Eleventh International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), Charlottesville, VA, Sept. 2002. ACM.

[33] D. Chavarŕıa-Miranda and J. Mellor-Crummey. An evaluation of data-parallel compiler sup-
port for line-sweep applications. The Journal of Instruction-Level Parallelism, 5, February
2003. (http://www.jilp.org/vol5).

[34] D. Chavarŕıa-Miranda and J. Mellor-Crummey. Effective communication coalescing for data
parallel applications. In Proceedings of the 10th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2005), Chicago, Illinois, June 2005.

[35] D. Chavarŕıa-Miranda, J. Mellor-Crummey, and T. Tsarang. Data-parallel compiler sup-
port for multipartitioning. Technical Report CS-TR01-374, Dept. of Computer Science, Rice
University, Mar. 2001.

[36] D. Chavarŕıa-Miranda, J. Nieplocha, and V. Tipparaju. Topolgy-aware Tile Mapping for
Clusters of SMPs. In Proceedings of the ACM International Conference on Computing F
rontiers, Ischia, Italy, May 2006.

[37] W. Chen, C. Iancu, and K. Yelick. Communication optimizations for fine-grained upc applica-
tions. In 14th International Conference on Parallel Architectures and Compilation Techniques
(PACT), 2005.

[38] W. Chen, A. Krishnamurthy, and K. Yelick. Polynomial-time algorithms for enforcing sequen-
tial consistency in spmd programs with arrays. In 16th International Workshop on Languages
and Compilers for Parallel Computing (LCPC), 2003.

[39] Y. Chen, J. Li, S. Wang, and D. Wang. ORC-OpenMP: An OpenMP compiler based on
ORC. In International Conference on Computational Science, pages 414–423, 2004.

[40] Chombo project web site. seesar.lbl.gov/anag/chombo/.

28

[41] C. Coarfa, Y. Dotsenko, J. Eckhardt, and J. Mellor-Crummey. Co-Array Fortran Perfor-
mance and Potential: An NPB Experimental Study. In Proc. of the 16th Intl. Workshop on
Languages and Compilers for Parallel Computing, number 2958 in LNCS. Springer-Verlag,
October 2-4, 2003.

[42] C. Coarfa, Y. Dotsenko, and J. Mellor-Crummey. Experiences with Sweep3D implementations
in Co-Array Fortran. In Proceedings of the Los Alamos Computer Science Institute Fifth
Annual Symposium, Santa Fe, NM, Oct. 2004. Distributed on CD-ROM.

[43] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-Ghazawi, A. Mohanti,
Y. Yao, and D. Chavarŕıa-Miranda. An evaluation of Global Address Space Languages: Co-
Array Fortran and Unified Parallel C. In Proceedings of the 10th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP 2005), Chicago, Illinois, June
2005.

[44] cOMPunity - the community of OpenMP users. http://www.compunity.org/.

[45] A. Darte, D. Chavarŕıa-Miranda, R. Fowler, and J. Mellor-Crummey. Generalized multi-
partitioning for multi-dimensional arrays. In Proceedings of the International Parallel and
Distributed Processing Symposium, Fort Lauderdale, FL, Apr. 2002.

[46] A. Darte, J. Mellor-Crummey, R. Fowler, and D. Chavarŕıa-Miranda. Generalized multi-
partitioning of multi-dimensional arrays for parallelizing line-sweep applications. Journal of
Parallel and Distributed Computing, 63(9):887–911, Sept. 2003.

[47] K. Datta, D. Bonachea, and K. Yelick. Titanium performance and potential: an npb experi-
mental study. In Languages and Compilers for Parallel Computing (LCPC), 2005.

[48] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. A Multiplatform Co-Array Fortran Com-
piler. In Proceedings of the 13th Intl. Conference of Parallel Architectures and Compilation
Techniques, Antibes Juan-les-Pins, France, September 29 - October 3 2004.

[49] Y. Dotsenko, C. Coarfa, J. Mellor-Crummey, and D. Chavarŕıa-Miranda. Experiences with
Co-Array Fortran on Hardware Shared Memory Platforms. In Proceedings of the 17th Inter-
national Workshop on Languages and Compilers for Parallel Computing, September 2004.

[50] Eclipse software framework. http://www.eclipse.org, 2002.

[51] C. Falzone, A. Chan, E. Lusk, and W. Gropp. Collective error detection for MPI collective
operations. In B. D. Martino, D. Kranzluüller, and J. Dongarra, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, number LNCS 3666 in Lecture
Notes in Computer Science, pages 138–147. Springer Verlag, Sept. 2005. 12th European
PVM/MPI User’s Group Meeting, Sorrento, Italy.

[52] I. Foster and J. Nieplocha. Disk Resident Arrays: An Array-Oriented I/O Library for Out-
of-Core Computations, Services for Distributed System Integration, pages 488–498. High-
Performance Mass Storage and Parallel I/O. IEEE and Wiley Press, 2002.

[53] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEE, 93(2):216–231, 2005. special issue on ”Program Generation, Optimization, and
Platform Adaptation”.

29

[54] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5 multithreaded
language. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference on Programming
language design and implementation, pages 212–223, New York, NY, USA, 1998. ACM Press.

[55] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley, Boston, MA, 1995.

[56] E. Givelberg and K. Yelick. Distributed immersed boundary simulation in titanium. SIAM
Journal on Scientific Computing, 2006. To appear.

[57] W. Gropp, D. Gunter, and V. Taylor. FPMPI: A fine-tuning performance profiling library
for MPI, Nov. 2001. Poster presented at SC2001.

[58] W. Gropp and R. Thakur. An evaluation of implementation options for MPI one-sided
communication. In B. D. Martino, D. Kranzluüller, and J. Dongarra, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, number LNCS 3666 in Lecture
Notes in Computer Science, pages 415–424. Springer Verlag, Sept. 2005. 12th European
PVM/MPI User’s Group Meeting, Sorrento, Italy.

[59] W. D. Gropp. Runtime checking of datatype signatures in MPI. In J. Dongarra, P. Kacsuk,
and N. Podhorszki, editors, Recent Advances in Parallel Virutal Machine and Message Pass-
ing Interface, number 1908 in Springer Lecture Notes in Computer Science, pages 160–167,
Sept. 2000. 7th European PVM/MPI Users’ Group Meeting.

[60] M. F. Guest, E. Apra, D. E. Bernholdt, H. A. Fruchtl, R. J. Harrison, R. A. Kendall, R. A.
Kutteh, X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I. Fann, R. J.
Littlefield, and J. Nieplocha. High-performance computing in chemistry: NWChem. Future
Generation Computer Systems, 12(4):273–289, 1996. Article.

[61] M. Gupta and E. Schonberg. Static analysis to reduce synchronization costs of data-parallel
programs. In ACM Symposium on Principles of Programming Languages (POPL), 1996.

[62] R. Gupta, V. Tipparaju, J. Nieplocha, and D. Panda. Efficient barrier using remote mem-
ory operations on via-based clusters. In Cluster Computing, 2002. Proceedings. 2002 IEEE
International Conference on, pages 83–90, 2002. TY - CONF.

[63] L. Huang, B. Chapman, and R. Kendall. OpenMP for clusters. In the Fifth European
Workshop on OpenMP, EWOMP’03, Aachen, Germany, 2003.

[64] L. Huang, B. Chapman, and Z. Liu. Towards a more efficient implementation of OpenMP
for clusters via translation to Global Arrays. Parallel Computing, 31(10-12), 2005.

[65] W. Huang, G. Santhanaraman, H.-W. Jin, and D. K. Panda. Scheduling of MPI-2 one sided
operations over InfiniBand. In Proceedings of Workshop on Communication Architecture
for Clusters (CAC 2005); In Conjunction with the International Parallel and Distributed
Processing Symposium, 2005.

[66] P. Husbands and K. Yelick. Parallel triangulation in Unified Parallel C (UPC). In SIAM
Meeting on Parallel Processing for Scientific Computing, Feb. 2004. Presentation only.

[67] C. Iancu, P. Husbands, and W. Chen. Message strip mining heuristics for high speed networks.
In VECPAR, 2004.

30

[68] C. Iancu, P. Husbands, and P. Hargrove. Hunting the overlap. In 14th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), 2005.

[69] W. Jiang, J. Liu, H. Jin, D. K. Panda, W. Gropp, and R. Thakur. High performance MPI-
2 one-sided communication over InfiniBand. In IEEE/ACM International Symposium on
Cluster Computing and the Grid, Chicago, IL, April 2004.

[70] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, D. Buntinas, R. Thakur, and W. Gropp. Effi-
cient implementation of MPI-2 passive one-sided communication on InfiniBand clusters. In
Proceedings of EuroPVM/MPI ’04, Budapest, Hungary, September 2004.

[71] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, D. Buntinas, R. Thakur, and W. Gropp. Effi-
cient implementation of MPI-2 passive one-sided communication on InfiniBand clusters. In
D. Kranzlmüller, P. Kacsuk, and J. Dongarra, editors, Recent Advances in Parallel Virtual
Machine and Message Passing Interface, number LNCS3241 in Lecture Notes in Computer
Science, pages 68–76. Springer Verlag, 2004. 11th European PVM/MPI User’s Group Meet-
ing, Budapest, Hungary.

[72] A. Kamil, J. Su, and K. Yelick. Making sequential consistency practical in titanium. In
Supercomputing, SC05, 2005.

[73] A. Kamil and K. Yelick. Concurrency analysis for parallel programs with textually aligned
barriers. In 18th International Workshop on Languages and Compilers for Parallel Comput-
ing, Hawthorne, New York, Oct. 2005.

[74] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The Omega
Library Interface Guide. Technical report, Dept. of Computer Science, Univ. of Maryland,
College Park, Apr. 1996.

[75] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In Frontiers ’95:
The 5th Symposium on the Frontiers of Massively Parallel Computation, McLean, VA, Feb.
1995.

[76] R. A. Kendall, E. Apra, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann, R. J.
Harrison, J. L. Ju, J. A. Nichols, J. Nieplocha, T. P. Straatsma, T. L. Windus, and A. T.
Wong. High performance computational chemistry: An overview of NWChem a distributed
parallel application. Computer Physics Communications, 128(1-2):260–283, 2000. Article.

[77] S. P. Kini, J. Liu, J. Wu, P. Wyckoff, and D. K. Panda. Fast and scalable barrier using
RDMA and multicast mechanisms for InfiniBand-based clusters. In EuroPVM/MPI, Oct.
2003.

[78] S. Krishnamoorthy, U. Catalyurek, J. Nieplocha, A. Rountev, and P. Sadayappan. An ex-
tensible global address space framework with decoupled task and data abstractions. In Proc.
IPDPS Workshop on Next Generation Software, 2006.

[79] S. Krishnamoorthy, U. Catalyurek, J. Nieplocha, and P. Sadayappan. An approach to
locality-conscious load balancing and transparent memory hierarchy management with a
global-address-space parallel programming model. In Proc. IPDPS Workshop on Perfor-
mance Optimization of High Level Languages and Libraries, 2006.

31

[80] S. Krishnamoorthy, J. Nieplocha, and P. Sadayappan. Data and computation abstractions
for dynamic and irregular computations. In Proc. Intl. Conference on High Performance
Computing, 2005.

[81] M. Krishnan, Y. Alexeev, T. L. Windus, and J. Nieplocha. Multilevel parallelism in compu-
tational chemistry using common component architecture and global arrays. In Proceedings
of SuperComputing. ACM and IEEE, 2005.

[82] M. Krishnan, Y. Alexeev, T. L. Windus, and J. Nieplocha. Multilevel parallelism in com-
putational chemistry using common component architecture and global arrays. In SC ’05:
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 23, Washington,
DC, USA, 2005. IEEE Computer Society.

[83] M. Krishnan and J. Nieplocha. Optimizing parallel multiplication operation for rectangular
and transposed matrices. In 10th IEEE International Conference on Parallel and Distributed
Systems (ICPADS’04)., 2004.

[84] M. Krishnan and J. Nieplocha. SRUMMA: a matrix multiplication algorithm suitable for clus-
ters and scalable shared memory systems. In Parallel and Distributed Processing Symposium,
pages 70–79, 2004. TY - CONF.

[85] M. Krishnan and J. Nieplocha. SRUMMA: a matrix multiplication algorithm suitable for clus-
ters and scalable shared memory systems. In Parallel and Distributed Processing Symposium,
pages 70–79, 2004. TY - CONF.

[86] M. Krishnan and J. Nieplocha. Optimizing performance on linux clusters using advanced
communication protocols: Achieving over 10 teraflops on an 8.6 teraflops linpack-rated Linux
cluster. In Proceedings of the 6th International Conference on Linux Clusters: The HPC
Revolution, 2005.

[87] M. Krishnan and J. Nieplocha. Memory Efficient Parallel Matrix Multiplication Operation
for Irregular Problems. In Proceedings of the ACM International Conference on Computing
F rontiers, Ischia, Italy, May 2006.

[88] M. Krishnan, V. Tipparaju, B. Palmer, and J. Nieplocha. Processor-group aware runtime sup-
port for shared-and global address space models. In Proceedings of International Conference
on Parallel Processing, ICPP 2004 Workshops, pages 506–513, August 2004.

[89] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng. OpenUH: An optimizing,
portable OpenMP compiler. In 12th Workshop on Compilers for Parallel Computers, 2006.

[90] C. Liao, Z. Liu, L. Huang, and B. Chapman. Evaluating OpenMP on chip multithreading
platforms. In First international workshop on OpenMP, Eugene, Oregon USA, June 2005.

[91] B. Liblit, A. Aiken, and K. Yelick. Type systems for distributed data sharing. In International
Static Analysis Symposium, San Diego, California, June 2003.

[92] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp, and B. Too-
nen. Design and implementation of MPICH2 over InfiniBand with RDMA support. In
Proceedings of Int’l Parallel and Distributed Processing Symposium, April 2004.

32

[93] J. Liu, A. Mamidala, and D. K. Panda. High performance MPI-level broadcast on Infini-
Band with hardware multicast support. In International Parallel and Distributed Processing
Symposium, 2004.

[94] J. Liu, A. Vishnu, and D. K. Panda. Building multirail InfiniBand clusters: MPI-level design
and performance evaluation. In SuperComputing Conference, 2004.

[95] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High performance RDMA-based
MPI implementation over InfiniBand. In 17th Annual ACM International Conference on
Supercomputing, June 2003.

[96] Z. Liu, B. Chapman, Y. Wen, L. Huang, and O. Hernandez. Analyses for the translation of
OpenMP codes into SPMD style with array privatization. In OpenMP Shared Memory Parallel
Programming: International Workshop on OpenMP Applications and Tools, WOMPAT 2003,
June 26-27, 2003. Proceedings, volume 2716 of Lecture Notes in Computer Science, pages 26–
41. Springer-Verlag Heidelberg, June 2003.

[97] Z. Liu, B. Chapman, T.-H. Weng, and O. Hernandez. Improving the performance of OpenMP
by array privatization. In OpenMP Shared Memory Parallel Programming: International
Workshop on OpenMP Applications and Tools (WOMPAT ’03), pages 244–259. Springer-
Verlag Heidelberg, 2003.

[98] Z. Liu, L. Huang, B. Chapman, and T.-H. Weng. Efficient implementation of OpenMP for
clusters with implicit data distribution. In OpenMP Shared Memory Parallel Programming:
International Workshop on OpenMP Applications and Tools (WOMPAT 2004), pages 121–
136. Springer-Verlag Heidelberg, 2004.

[99] Looptool. http://lacsi.rice.edu/software/looptool.

[100] A. Mamidala, H. W. Jin, and D. K. Panda. Efficient hardware multicast group management
for multiple MPI communicators over InfiniBand. In EuroPVM/MPI, 2005.

[101] A. Mamidala, J. Liu, and D. K. Panda. Efficient barrier and allreduce on IBA clusters using
hardware multicast and adaptive algorithms. In IEEE Cluster Computing, 2004.

[102] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming. Addison-
Wesley, Boston, MA, 2004.

[103] J. Mellor-Crummey and V. Adve. Simplifying control flow in compiler-generated parallel
code. International Journal of Parallel Programming, 26(5), 1998.

[104] J. Mellor-Crummey, V. Adve, B. Broom, D. C. a Miranda, R. Fowler, G. Jin, K. Kennedy,
and Q. Yi. Advanced optimization strategies in the Rice dHPF compiler. Concurrency:
Practice and Experience, 14(8-9):741–767, 2002.

[105] A. Moody, J. Fernandez, F. Petrini, and D. Panda. Scalable NIC-based reduction on large-
scale clusters. In SC ’03, November 2003.

[106] MPI Forum. MPI documents page. http://www.mpi-forum.org/docs/docs.html.

[107] M. S. Müller, C. Niethammer, B. Chapman, Y. Wen, and Z. Liu. Validating OpenMP 2.5
for Fortran and C/C++. In Sixth European Workshop on OpenMP, KTH Royal Institute of
Technology, Stockholm, Sweden, October 2004.

33

[108] Network-Based Computing Laboratory. MVAPICH: MPI for InfiniBand on VAPI Layer.
http://nowlab.cse.ohio-state.edu/projects/mpi-iba.

[109] J. Nieplocha, E. Apra, J. Ju, and V. Tipparaju. One-sided communication on clusters with
Myrinet. Cluster Computing, 6(2):115–124, 2003. TY - JOUR.

[110] J. Nieplocha, D. Baxter, V. Tipparaju, C. Rasmunssen, and R. W. Numrich. Symmetric data
objects and remote memory access communication for Fortran-95 applications. In Lecture
Notes in Computer Science, volume 3648, pages 720 – 729, August 2005.

[111] J. Nieplocha and B. Carpenter. ARMCI: A Portable Remote Memory Copy Library for
Distributed Array Libraries and Compiler Run-Time Systems, volume 1586 of Lecture Notes
in Computer Science, pages 533–546. Springer-Verlag, 1999.

[112] J. Nieplocha and I. Foster. Disk resident arrays: an array-oriented i/o library for out-of-core
computations. In Frontiers of Massively Parallel Computing, pages 196–204, 1996. TY -
CONF.

[113] J. Nieplocha, J. Harrison, R, and I. Foster. Explicit management of memory hierarchy.
Advances in High Performance Computing, NATO ASI 3/30:185–200, 1996.

[114] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A portable shared memory
programming model for distributed memory computers. In Supercomputing, pages 340–349.
IEEE CS Press, 1994.

[115] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A nonuniform memory
access programming model for high-performance computers. Journal of Supercomputing,
10(2):169–189, 1996. Article.

[116] J. Nieplocha, J. L. Ju, and T. P. Straatsma. A multiprotocol communication support for
the global address space programming model on the ibm sp. In Euro-Par 2000 Parallel
Processing, Proceedings, volume 1900 of Lecture Notes in Computer Science, pages 718–728.
2000. Article.

[117] J. Nieplocha, M. Krishnan, B. Palmer, V. Tipparaju, and Y. Zhang. Exploiting proces-
sor groups to extend scalability of the GA shared memory programming model. In ACM
Computing Frontiers, Italy, 2005.

[118] J. Nieplocha, M. Krishnan, B. Palmer, V. Tipparaju, and Y. Zhang. Exploiting processor
groups to extend scalability of the GA shared memory programming model. In CF ’05:
Proceedings of the 2nd conference on Computing frontiers, pages 262–272, New York, NY,
USA, 2005. ACM Press.

[119] J. Nieplocha, B. Palmer, V. Tipparaju, M. K. ishnan, H. Trease, and E. Apra. Advances,
Applications and Performance of the Global Arrays Shared Memory Programming Toolkit.
International Journal of High Performance Computinga and Applications, 20(2), 2006.

[120] J. Nieplocha, V. Tipparaju, and Krishnan. Optimizing strided remote memory access oper-
ations on the Quadrics QsNet-II network interconnect. In HPC-Asia 2005, Beijing, China,
2005.

34

[121] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. Panda. High Performance Remote Memory
Access Comunications: The ARMCI Approach. International Journal of High Performance
Computing and Applications, 20(2), 2006.

[122] J. Nieplocha, V. Tipparaju, M. Krishnan, G. Santhanaraman, and D. Panda. Optimizing
mechanisms for latency tolerance in remote memory access communication on clusters. In
Cluster Computing, 2003. Proceedings. 2003 IEEE International Conference on, pages 138–
147, 2003. TY - CONF.

[123] J. Nieplocha, V. Tipparaju, M. Krishnan, G. Santhanaraman, and D. Panda. Optimiza-
tion and performance evaluation of mechanisms for latency tolerance in remote memory
access communication on clusters. Int. J. High Performance Computing and Networking,
2(2/3/4):198–209, 2004.

[124] J. Nieplocha, V. Tipparaju, A. Saify, and D. K. Panda. Protocols and strategies for optimizing
performance of remote memory operations on clusters. In Communication Architecture for
Clusters (CAC’02) Workshop, held in conjunction with IPDPS ’02, pages 164 – 173, 2002.

[125] R. W. Numrich and J. K. Reid. Co-Array Fortran for parallel programming. Technical Report
RAL-TR-1998-060, Rutheford Appleton Laboratory, August 1998.

[126] R. W. Numrich and J. K. Reid. Co-Array Fortran for parallel programming. ACM Fortran
Forum, 17(2):1–31, August 1998.

[127] C. Oehmen and J. Nieplocha. ScalaBLAST: A scalable implementation of BLAST for high
performance data-intensive bioinformatics analysis. IEEE Trans. Parallel Dist. Sys. Special
issue on high-performance computational biology, 2006. To appear.

[128] L. Oliker, A. Canning, J. Carter, and J. Shalf. Scientific computations on modern parallel
vector systems. In Proceedings of SC2004, Pittsburgh, PA, Nov. 2004. IEEE Computer Society
Press.

[129] The OpenUH compiler project. http://www.cs.uh.edu/~openuh, 2005.

[130] B. Palmer, J. Nieplocha, and E. Apra. Shared memory mirroring for reducing communication
overhead on commodity networks. In International Conference on Cluster Computing, pages
420–428, 2003. TY - CONF.

[131] R. Panuganti, M. M. Baskaran, D. Hudak, A. Krishnamurthy, J. Nieplocha, A. Rountev, and
P. Sadayappan. GAMMA: Global Arrays meets MATLAB. Technical Report OSU-CISRC-
1/06-TR15, Ohio State University, Jan. 2006.

[132] K. Parzyszek, J. Nieplocha, and R. A. Kendall. Generalized portable shmem library for
high performance computing. In M. Guizani and X. Shen, editors, IASTED Parallel and
Distributed Computing and Systems, pages 401–406, Las Vegas, Nevada, 2000. IASTED.

[133] Pathscale EKOPATH compiler suite for AMD64 and EM64T. http://www.pathscale.com/
ekopath.html, 2006.

[134] Perfsuite. http://perfsuite.ncsa.uiuc.edu/.

[135] Pmodels project web site. http://www.pmodels.org.

35

[136] A. Prabhakar, V. Getov, and B. Chapman. Performance comparisons of basic OpenMP
constructs. Lecture Notes in Computer Science, 2327:413–424, 2002.

[137] W. Pugh. A practical algorithm for exact array dependence analysis. Communications of the
ACM, 35(8):102–114, Aug. 1992.

[138] A. Qasem, G. Jin, and J. Mellor-Crummey. Improving performance with integrated program
transformations. Technical Report TR03-419, Rice University, Department of Computer
Science, Oct. 2003.

[139] C. E. Rasmussen, M. J. Sottile, J. Nieplocha, R. W. Numrich, and E. Jones. Co-array python:
A parallel extension to the python language. In Proceedings Euro-Par, pages 632–637, 2004.

[140] A. Rogers and K. Pingali. Process decomposition through locality of reference. In Proceedings
of the SIGPLAN ’89 Conference on Programming Language Design and Implementation,
Portland, OR, June 1989.

[141] M. Rosing, J. Nieplocha, and S. Yabusaki. Toward efficient compilation of user-defined ex-
tensible Fortran directives. In HIPS, pages 61–69. IEEE Computer Society, 2004.

[142] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, Chichester,
Great Britain, 1986.

[143] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R. Govindaraju, K. Gildea, P. DiNicola,
and C. Bender. Performance and experience with lapi-a new high-performance communication
library for the ibm rs/6000 sp. In International Parallel Processing Symposium IPPS/SPDP,
pages 260–266, 1998. TY - CONF.

[144] M. Snir and T. Mattson. Patterns for high performance computing. Presentation at Dagstuhl
Seminar on Architectures and Algorithms for Petascale Computing, February 2006.

[145] SPHINX. http://www.llnl.gov/casc/sphinx/sphinx.html.

[146] H. Su, B. Gordon, S. Oral, and A. George. Sci networking for shared-memory computing in
upc: Blueprints of the gasnet sci conduit. In IEEE Workshop on High Speed Local Networks
(HSLN), 2004.

[147] J. Su and K. Yelick. Automatic support for irregular computations in a high-level language.
In 19th International Parallel and Distributed Processing Symposium (IPDPS), 2005.

[148] Sun Microsystems. The Fortress language specification, version 0.866. http://research.

sun.com/projects/plrg/fortress0866.pdf.

[149] S. Sur, U. Bondhugula, A. Mamidala, H.-W. Jin, and D. K. Panda. High performance
RDMA based all-to-all broadcast for InfiniBand clusters. In International Conference on
High Performance Computing, 2005.

[150] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared receive queue based scalable MPI design
for InfiniBand clusters. In International Parallel and Distributed Processing Symposium, April
2006.

[151] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda. RDMA read based rendezvous protocol for MPI
over InfiniBand: Design alternatives and benefits. In Symposium on Principles and Practice
of Parallel Programming, March 2006.

36

[152] S. Sur, H.-W. Jin, and D. K. Panda. Efficient and scalable all-to-all exchange for InfiniBand-
based clusters. In International Conference on Parallel Processing, August 2004.

[153] TAU - tuning and analysis utilites. http://www.cs.uoregon.edu/research/tau/home.php,
2006.

[154] R. Thakur and W. Gropp. Improving the performance of collective operations in MPICH.
In J. Dongarra, D. Laforenza, and S. Orlando, editors, Recent Advances in Parallel Virtual
Machine and Message Passing Interface, number LNCS2840 in Lecture Notes in Computer
Science, pages 257–267. Springer Verlag, 2003. 10th European PVM/MPI User’s Group
Meeting, Venice, Italy.

[155] R. Thakur, W. Gropp, and B. Toonen. Minimizing synchronization overhead in the imple-
mentation of MPI one-sided communication. In D. Kranzlmüller, P. Kacsuk, and J. Dongarra,
editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface, number
LNCS3241 in Lecture Notes in Computer Science, pages 57–67. Springer Verlag, 2004. 11th
European PVM/MPI User’s Group Meeting, Budapest, Hungary.

[156] R. Thakur, W. Gropp, and B. Toonen. Optimizing the synchronization operations in MPI
one-sided communication. High Performance Computing Applications, 19(2):119–128, 2005.

[157] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communication op-
erations in MPICH. International Journal of High Performance Computer Applications,
19(1):49–66, 2005.

[158] V. Tipparaju, M. Krishnan, J. Nieplocha, G. Santhanaraman, and D. Panda. Exploiting
non-blocking remote memory access communication in scientific benchmarks. In High Per-
formance Computing - HiPC, volume 2913 of Lecture Notes in Computer Science, pages
248–258. Springer, 2003. Article.

[159] V. Tipparaju, M. Krishnan, J. Nieplocha, G. Santhanaraman, and D. K. Panda. Exploiting
non-blocking remote memory access communication in scientific benchmarks. In International
Conference on High Performance Computing (HiPC’03), Hyderabad, India, December 2003.

[160] V. Tipparaju and J. Nieplocha. Optimizing all-to-all collective communication by exploiting
concurrency in modern networks. In ACM/IEEE SC 2005 Conference (SC’05), Seattle,
Washington, November 2005.

[161] V. Tipparaju, J. Nieplocha, and D. Panda. Fast collective operations using shared and remote
memory access protocols on clusters. In Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, page 10 pp., 2003. TY - CONF.

[162] V. Tipparaju, J. Nieplocha, and D. K. Panda. Fast collective operations using shared and
remote memory access protocols on clusters. In Int’l Parallel and Distributed Processing
Symposium (IPDPS ’03), Apr. 2003.

[163] V. Tipparaju, G. Santhanaraman, J. Nieplocha, and D. K. Panda. Host-assisted zero-copy
remote memory access communication on infiniband. In 18th International Parallel and
Distributed Processing Symposium Conference (IPDPS’04), Santa Fe, New Mexico, April
2004.

[164] R. University. cafc: An open-source compiler for Co-array Fortran. http://www.hipersoft.
rice.edu/caf.

37

[165] R. F. Van der Wijngaart. Efficient implementation of a 3-dimensional ADI method on the
iPSC/860. In Proceedings of Supercomputing 1993, pages 102–111. IEEE Computer Society
Press, 1993.

[166] A. Vishnu, G. Santhanaraman, W. Huang, H.-W. Jin, and D. K. Panda. Supporting MPI-2
one sided communication on multi-rail InfiniBand clusters: Design challenges and perfor-
mance benefits. In International Conference on High Performance Computing, 2005.

[167] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: a mecha-
nism for integrated communication and computation. In Proceedings of the 19th International
Symposium on Computer Architecture, pages 256–266, Gold Coast, Australia, May 1992.

[168] T. Wen and P. Colella. Adaptive mesh refinement in titanium. In 19th International Parallel
and Distributed Processing Symposium (IPDPS), 2005.

[169] T.-H. Weng and B. Chapman. Implementing OpenMP using dataflow execution model for
data locality and efficient parallel execution. In Proceedings of the 7th workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS-7). IEEE Press, 2002.

[170] T.-H. Weng and B. Chapman. Toward optimization of OpenMP codes for synchronization
and data reuse. In The 2nd Workshop on Hardware/Software Support for High Performane
Scientific and Engineering Computing (SHPSEC-03), in conjunction with the 12th Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT-03), 2003.

[171] F. Wolf and B. Mohr. Automatic performance analysis of hybrid MPI/OpenMP applications.
J. Syst. Archit., 49(10-1):421–439, 2003.

[172] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan, E. L. Lusk, and
W. Gropp. From trace generation to visualization: A performance framework for distributed
parallel systems. In Proceedings of SC2000, 2000.

[173] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. N.
Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance
Java dialect. Concurrency: Practice and Experience, 10(11–13), September–November 1998.

[174] W. Yu, D. Buntinas, and D. K. Panda. High performance and reliable NIC-based multicast
over Myrinet/GM-2. In Proceedings of the International Conference on Parallel Processing
’03, October 2003.

[175] W. Yu, Q. Gao, and D. K. Panda. Adaptive connection management for scalable MPI over
InfiniBand. In International Parallel and Distributed Processing Symposium, April 2006.

[176] Y. Zhang, V. Tipparaju, J. Nieplocha, and S. Hariri. Parallelization of the NAS conjugate
gradient benchmark using the global arrays shared memory programming model. In 19th
IEEE International Parallel and Distributed Processing Symposium, 2005, April 2005.

38

